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ABSTRACT

Fake base stations are a well-known threat to pre-5G mobile net-
works and are one of the most common primitives for mobile at-
tacks that are used in the real world. However, despite years of
research we only have limited knowledge about their performance
spectrum and how well detection mechanisms work in practice.
Consequently, mobile network operators and vendors struggle to
identify, implement, and deploy a practical solution in the form of
detection mechanisms. For the first time, we systematically study
fake base station attacks and their main influencing factors. We use
a specification-conform simulation model that lets us analyze fake
base station attacks on a large scale, and test detection mechanisms
on the generated data. The simulation environment allows us to test
diverse scenarios with a large measure of control and insight, while
providing realism in the aspects that matter. We study detection
mechanisms from academic work and ongoing 3GPP discussions.
Our experiments reveal the influencing factors of the success of
fake base station attacks and detection, and provides nuances for
performance that is missing from existing work.
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1 INTRODUCTION

Fake base stations have far-reaching privacy and security implica-
tions for the users of pre-5G mobile networks. They pose a real-
world threat in countries like China, India, or the US, where they
generate a remarkable daily revenue with SMS spam [23, 24]. Other
attacks use fake base stations to localize and track victims by learn-
ing the users’ identities [18—20]. Just lately, fake base stations were
also considered as a way to deploy the Pegasus malware, com-
promising a victims’ phone [12]. Fake base station attacks will be
around as long as pre-5G networks are in use, which is likely to be
for the foreseeable future. With no solution in sight there remains
a need for evaluation of this threat.

Although fake base stations are well-studied and also occur in
real-world settings, the literature is focused on feasibility studies
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in a lab setup. The behavior of fake base stations in the wild, and
how users interact with them in the presence of large-scale net-
work infrastructure in the real-world, is not described in academic
literature. This is mainly due to practical and ethical limitations in
testing. This exposes an important gap in the current understanding
of the actual threat posed by fake base stations.

In response to the threat of fake base stations, academia, indus-
try, and the 3GPP have developed and discussed approaches for
detection. They can be classified into sensor-based [11, 15], app-
based [22, 24], and network-based [6, 9, 14] mechanisms. Sensor-
based detection runs on dedicated hardware and requires the de-
ployment of an additional infrastructure. App-based mechanisms
run on the end devices of users and, therefore, do not require any
network-side changes or additional infrastructure. While such an
easy setup facilitates crowd-sourced detection, sensor and app-
based detections are limited by the amount of information a single
sensor or phone can gather, which makes detection challenging
and error-prone [18]. These approaches have seen limited adoption.
On the other side, network-based approaches have a broader view
of the infrastructure and potential incidents. While this contributes
to a more informed state and possibly higher detection rates, such
mechanisms need to be integrated into the existing infrastructure.
There is no data on the adoption of these methods.

Existing defense concepts have in common that they often as-
sume a specific attack aim and defined technical capabilities at the
fake base station. However, we see a wide diversity of these assump-
tions throughout the literature, reflecting the diversity of attacks.
For example, Zhang et al.build an on-phone SMS-spam detection
mechanism assuming an attack involves sending SMS-spam [24]. At
the same time, similar work in the same context assumes an attack
aim focused on identifying a victim rather than sending out spam
messages [9]. Consequently, we learn more about the performance
of specialized countermeasures but have a remaining blind spot
when it comes to the effectiveness against the basic functioning of
fake base station attacks. Due to the diverse nature of real-world
attacks based on fake base stations it is paramount to study defenses
at this most basic level.

Likewise, we only have limited knowledge about the perfor-
mance spectrum of fake base station attacks. Experimental setups
can demonstrate feasibility of specific attacks in a small setup. How-
ever, no existing work focuses on the performance of attacks in a
large-scale setup. Improving the understanding of success chance of
fake base station attack strategies and their contributing factors is
essential to properly evaluate the threat posed by fake base stations
and gain full insight into performance of detection mechanism.

To gain insight into the performance of fake base station attacks
we propose a simulation framework. This enables a large-scale
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evaluation of attack characteristics. We model user behaviors, net-
work components, and attackers that interact during a specification-
conform simulation. This allows us to observe the large-scale per-
formance of attacks and identify previously unknown challenges
and limitations. Our simulation framework is available at [1].

Following the evaluation of fake base station attack performance
we analyze a set of network-based defensive approaches that are
currently under discussion in the 3GPP [4] or studied in prior
work [9, 15]. We analyze their performance in our large-scale sim-
ulation settings and identify limitations that affect the detection
capabilities of a defense. Both steps of our experimental evalua-
tion reveal insights into the performance of attacks and defenses,
including challenges for attackers and limitations on detection
mechanisms in all circumstances.

With our work, we provide a first measure of the impact of fake
base station attacks and defenses in a large-scale setting. Our new
insights contribute to the ongoing discussion of practical detection
mechanisms and help to overcome previous misconceptions regard-
ing the effectivity of fake base stations. To this end, we make the
following contributions.

e Technical Simulation Model. We provide a specialized
simulation model conforming to mobile network specifica-
tions that complements existing frameworks. We share this
model to contribute to future research.

Attack and Detection Performance. We use the simula-

tion model to analyze the performance of fake base stations

as a crucial building block for over-the-air attacks. Based
on these findings we analyze the performance of various
methods of fake base station detection.

e Real-World Implications. We discuss the effectivity of
fake base station attacks and defense mechanisms together
with considerations concerning real-world implementation.
We hope to contribute to the ongoing discussions and enable
operators to make a balanced decision about fake base station
detection.

2 TECHNICAL BACKGROUND

In a 4G mobile network, a User Equipment (UE) establishes a con-
nection to the core network (Evolved Packet Core (EPC)) through
the Radio Access Network (RAN). The RAN consists of base stations
(Evolved NodeB (eNodeB)) that provide connectivity at a certain
frequency and within the covered cell. In the context of fake base
stations, we are mainly interested in the messages exchanged on
the Non-Access Stratum (NAS) layer between the UE and the EPC,
and the Radio Resource Control (RRC) layer between the UE and
the eNodeB. In its most basic form, a fake base station is an eNodeB
that is not part of the legitimate network while still establishing
some sort of connection with a UE.

2.1 Idle procedures

For a fake base station to succeed the UE must decide to switch from
a legitimate eNodeB to the fake base station. This can only happen
when the UE is idle. In the idle state the UE has established a con-
nection and security context with the network previously, but is not
currently actively communicating. There are four characteristics
that are particularly relevant for this transition.
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SIB: SIBs are periodic broadcast messages that spread information
for cell selection and reselection. This includes the frequencies on
which the UE should search for candidate cells and the rules for
selecting cells, such as priorities for each frequency. Both charac-
teristics have an important effect on fake base station attacks, as
they influence whether the UE recognizes and selects the attacker’s
base station.

Cell Selection: The cell selection procedure defines how a UE finds
the best suitable cell in its current location when it has no network
registration. For each frequency that it supports the UE will find
cells matching its network provider, and for each it will compute the
quality level. The quality level depends on the physical-layer PHY
characteristics and the information from the System Information
Block (SIB). The UE will connect to the first suitable cell it finds.

Idle Cell Reselection: When the UE camps on a cell in the idle
state, it will periodically re-evaluate other cells to select a better can-
didate if possible. Such updates compensate for varying connection
characteristics, e. g., caused by users moving around. The proce-
dure relies on a frequency’s priority, which is an integer set in a SIB
message. For the reselection, the UE accomplishes the following
checks:

(1) Search for cells on frequencies at a higher priority than the
current frequency’s priority.

(2) If no higher-priority cells are found, and the current signal is
below a certain threshold, the UE will switch to the best intra-
frequency cells or equal-priority cell ranked by to signal
strength or quality.

(3) If the above does not succeed and the current signal is bad,
search on frequencies of lower priority.

Tracking Area Updates: A Tracking Area (TA) combines multiple
neighboring cells in the network infrastructure, with TA codes sent
in a SIB. TAs are used to estimate the whereabouts of idle users
within the infrastructure which is used for, e. g., targeted paging
(§2.2). To keep the network up-to-date, the UE sends a Tracking
Area Update (TAU) that informs the network about its updated
TA. TA updates trigger the establishment of an active connection,
which can lead to a message exchange that a fake base station can
exploit.

2.2 Active state

In the active state, the UE is much less vulnerable to fake base
station attacks, as in this state the network decides what cell the
UE connects to. To make these decisions the network request Mea-
surement Reports from the UE (§2.2).

Measurement Reports Measurement reports convey information
about the network that surrounds a UE [7]. The UE receives instruc-
tions on what, how, and when to measure using the physical layer
PHY. The UE shares this information with the eNodeB that it cur-
rently connects to. Among other items, a measurement report can
document the signal strength of all cells in its vicinity transmitting
on a target frequency band. Measurement reports are either sent
due to an event, such as signal strenghth crossing a boundary, or
sent periodically. It is up to the operator to configure this in such a
way that there is enough data to make correct handover decisions
and ensure adequate connectivity. Real-world data suggests that
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configurations vary a lot, with measurement reports being sent
roughly every few minutes.

Switching to connected state There are two ways in which the UE
can begin establishing an active connection with the core network.
One option is for the UE itself to decide to do this. This happens
regularly with modern handheld devices, where background traffic
initiates an active connection. The other option is for the network
to initiate the connection, for example when there is a voice call or
message for the UE. In this case, the network broadcasts a paging
request to the tracking area the UE is registered to; the UE then
initializes network connection to receive data.

3 FAKE BASE STATION ATTACKS AND
DEFENSES

A number of mobile network attacks require the use of a fake
base station to connect with the user. This connection can then be
abused for tracking and identification in the case of an International
Mobile Subscriber Identity (IMSI)-catcher [10]. Other uses include,
for example, SMS spamming [24]. To evaluate the success rate of the
fake base station attack we must first understand its goals and what
factors influence these goals. After this we classify the different
methods which detect the fake base station.

3.1 Fake base station

A fake base stations is an eNodeB that is operated by the attacker
with the intention to establish a connection with UEs that are
serviced by a legitimate network operator in the area. This allows
the fake base station operator to send unprotected messages, which
can for example be used to request the permanent identifier IMSI
for tracking purposes, but does not allow for setting up a data
connection. We assume the fake base station uses a fresh Tracking
Area Code (TAC) to force the UE to perform a TAU procedure and
thus initiate a connection (see § 2.1). Fake base stations vary in the
following ways:

e Physical properties: an important feature of a base station
is the transmission power of its signal. For a fake base station
this influences the area in which UEs will see the fake base
stations as a viable cell. Besides this the placement of the
fake base station is important; UEs will not evaluate other
base stations when they are close to a legitimate base station.

e Cell properties: the frequency and cell number the fake
base station operates on influences how UEs evaluate it when
connected to the legitimate network. Since frequency scan-
ning is expensive the fake base station is restricted to fre-
quencies indicated by the legitimate network. The way these
frequencies are configured by the legitimate network influ-
ence how the fake base station gets evaluated by UEs.

o Activity: fake base station attack success rate is equivalent
to the chance that an UE connects, which is not influenced
by the fake base station’s activities. Defenses, however, can
make use of the active communication between the UE and
the fake base station to detect anomalous behaviour.
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3.2 Defenses

Since fake base stations use specification-compliant behaviour it
is not possible to prevent them using the current infrastructure.
However, using encryption and integrity-protection prevents Man-
in-the-middle-based attacks using fake base stations which rely on
unprotected communication [21]. The introduction of 5G also intro-
duced a prevention for the IMSI-catcher, which is the most preva-
lent fake base station-based attack. This is done by preventing the
cleartext transmission of IMSIs, which invalidates this attack [17].

Since pre-5G networks will be around for the foreseeable future,
the best possible option to mitigate these attacks is to detect them.
This can be done in a variety of ways:

o The network operator can deploy sensors that scan frequen-
cies for new and anomalous cells.

e Users can use their UE to detect anomalous behaviour of the
base stations they interact with. This can also be aggregated
by a third party.

e The network can use the data that it handles for the con-
nection of UEs to detect anomalous patterns.

In this paper we are primarily interested in the network-based
detection. Network-based detection does not require additional
infrastructure in contrast to sensor-based detection, which makes it
more attractive for network operators. User-based detection, as the
alternative, is only beneficial over network-based detection if there
is data that the UE records that the network does not also receive.
In the case of general fake base stations the most important data
is the measurement of cells in the UE’s neighbourhood, which the
network receives through measurement reports (see § 2.2). Users,
or third parties aggregating detection data, also do not always have
access to ground truth about base station placement, which we can
assume the network to have.

4 SIMULATION MODEL

Our simulation model implements components of a 4G mobile
network and focuses on the most relevant characteristics related
to fake base station attacks and their detection. We first introduce
these components and define their functionality according to the
technical specification of 4G. We then present the parameters of
the simulation model.

4.1 High-Level Architecture

In our model, we define static characteristics like the underlying
map, the distribution of base stations, and the signal model, as
well as dynamic features including the movement of users, the
communication between components, and an adversary in different
attack scenarios.

4.1.1 Static Characteristics. The static characteristics represent
features of the simulation that are fixed for each scenario.

e Map. We use a square map with a mostly-filled grid of
spaced-out square buildings (cf. Appendix 8). This layout
represents a generic city with building blocks and streets.

o Base Stations. We place base stations in strategic locations
on the map such that all of the map has coverage. Tooling
and techniques exist for performing this in practice but in
our simple maps this is straightforward.
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o Signal Model. We use a raytracing model to approximate
the signal model that incorporates interaction (reflections,
shadows) with the buildings on our map. The basis for this
is the formula for signal loss based on a distance d:

d
L(d) = 20logy () M

Here, w refers to the wavelength of the signal being sim-
ulated. Signal strength is determined by the base station’s
transmission power, the free-space loss according to the
travel distance of a ray, and any signal loss incurred by build-
ings the ray passes or bounces off. Each station also possesses
a small number of beams in which its signal is stronger, mim-
icking a commercial setup with multiple directional anten-
nas.

4.1.2  Dynamic Characteristics. The dynamic characteristics of our
model represent features that change during a simulation run.

e Mobility. Users follow random trajectories along the streets
of the map. Users move independently.

e Communication. We simulate two active components of
a mobile network, namely, the users (UEs) and the infras-
tructure (EPC and eNodeB). The core network in our simu-
lation performs the tasks of the Mobility Management En-
tity (MME) and the RRC component of the eNodeB. We do
not simulate physical-layer communication, but rather focus
on the abstract interaction between components.

o Attacker. Similar to the benign base stations, we configure
and control the malicious eNodeB through its core network
components. The attacker can be toggled to simulate the
moment when a fake base station appears/disappears.

4.2

To achieve realism, our simulation model conforms to the Long
Term Evolution (LTE) specification (cf. Appendix 2). Note that these
procedures are highly similar in 3G and 5G.

Specification Conformity

e Phy. While we do not simulate actual transmissions, our
model focuses on the received signal strength according to
our signal model.

o SIB. We model a subset of SIB messages necessary for dis-
tributing the values needed for the Cell selection and rese-
lection procedures.

o Cell Selection and Reselection. We implement all primary
features of the cell (re)selection in idle mode to imitate how
a user (re-)evaluates available cells and picks one of them
for the primary connection.

e RRC Procedures. For our detection techniques, we use
RRC characteristics, e. g., by using measurement reports for
a signal-based anomaly detection.

e NAS Procedures. The attach and detach procedures are
essential for the connection establishment; The TAU mecha-
nism is part of one of the detection techniques in which the
network recognizes anomalous update behavior.
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4.3 Model Parameters

We divide the most relevant parameters of our simulation model
into the three groups Execution, Network, and Attacker. The used
values for all experiments can be found in the appendix in Table 1.

4.3.1 Execution. The Execution parameters summarize the general
setup of a simulation run. Within this we count the map size and
run time, which are constant. We do vary the base station and
user positions; base stations are placed as described above, and
users are distributed randomly. We randomize each run of the
simulation using a seed. This allows us to reproduce specific runs
while achieving diverse random repetitions overall.

4.3.2  Network. The Network parameters define the capabilities of
the legitimate base stations. Each eNodeB in the network receives
its own configuration including the following parameters. For each
base station we set the frequency and its transmission power. Fre-
quencies have a global priority.

These parameters, together with base station placement, are set
to replicate realistic scenarios. Our simulation offers the opportu-
nity to choose unrealistic parameters to test scenarios that would
be unachievable in real life, which could be interesting for future
work.

4.3.3  Attacker. An attacker deploys a fake base station with the
same standard characteristics as a legitimate eNodeB in our model,
which we will assume is synonymous with the attacker. We only run
experiments with one attacker at a time. An attacker has the same
defining parameters as a legitimate eNodeB, cf. 4.3.2. The attacker’s
position is studied in Section 5.3. We will study the priority of an
attacker in Section 5.4. The attacker’s signal strength, which we
study in relation to the legitimate eNodeBs, is studied in Section 5.5.

4.4 Model logic validation

To verify aspects of the simulation model, we conducted practical
experiments using commercial equipment. We verified the cell
reselection model, as this is vital to our experiments.

To study the reselection procedure, we used an Amarisoft EPC
with corresponding eNodeB as the cell the UE is camping on. A
second eNodeB based on srsran acts as the reselection target. The
UE is provided by a Oneplus Nord 2 5G and Huawei P40 Lite 5G.
We placed the setup inside a shielding box. We changed the gain
of the serving eNodeB at runtime to mimic a change in signal
reception. We determined the lowest gain value at which reselection
occurs through the bisection method. This gain value is translated
to the Reference Signal Received Power (RSRP) based on the value
reported by the android system which is calibrated to the base
station gain.

The details of the performed test cases can be found in Table 3.
We see that commercial the UEs do follow the specifications, al-
though the Huawei UE did not perform intra-frequency reselection
as expected in our setup. This would be of limited impact on our
results.

This validates that commercial equipment uses the reselection
algorithm from the specification. Similar test cases were made for
the model code, which validates the logic used to implement the
algorithm in the model.
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5 EXPERIMENTS: ATTACKS

In the first phase of experiments, we analyze what factors influ-
ence the performance of fake base stations. We first describe the
experimental setup of our simulation model and introduce the met-
rics that enable us to assess the potential success of an attack in a
large-scale setting. Within this model, we analyze key strategical
aspects of an attack. We use our experiments to estimate a fake
base station’s performance range and dependencies in a large-scale
environment.

5.1 Experimental Setup

In our experiments, we have a fixed set of benign base stations on
a map of 2km x 2 km. Each simulation covers 2000 discrete steps
and involves 500 independent users, each representing one random
repetition. The benign base stations operate on a fixed setup and in
the same locations on the map. We focus on three strategic aspects
that affect the success of an attack:

(1) Placement of the fake base station
(2) Frequency priorities
(3) Offered signal strength

As these strategic aspects affect each other, we guide through them
step-by-step and always fix two of them while inspecting the effects
of varying the third parameter. Our goal is to gain insights into
the performance spectrum of fake base stations and to identify an
optimal strategy within our network setup.

5.2 Success metric

We define the attack success as the relative number of users that
connect to the fake base station at least once during the runtime.
Please note that our metric cannot predict the arbitrary success of a
real-world attack, as it is purely focused on an abstract assessment,
but is useful for comparing different parameter sets for the same
experiment.

5.3 Impact of Placement

Within the three strategic aspects of our experiments, the adversary
has the highest degree of freedom for the placement of a fake base
station. It influences how close any potential victims are to the
malicious station and how strong the benign stations’ signals are
in the region it targets.

Given a fixed setup of benign base stations, an adversary can
estimate the signal strength of all stations in reach. This allows
the attacker to estimate the optimal placement locations for the
attack. The quality of a location mainly depends on its distance to
the benign base stations and the surroundings (buildings and other
obstacles). This becomes visible when relating the attack success
to the distance to the closest benign station (cf. Figure 1). In this
experiment, the trend of success probability ranges from around
7% to 13%, which we remind the reader does not indicate success
chance of a real attack. It does allow us to conclude that moving
100 m further away from the legitimate base station gives an 8.8%
success rate increase.

Conclusion. The placement of a fake base station is an essential
factor for its effectiveness. Our experiments show that, on average,
a position further away from the legitimate network is almost twice
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Figure 2: Success chance of fake base station attacks where
the attacker uses an otherwise unused frequency. We show
this success chance for different values of the fake base sta-
tion strength.

as effective. The absolute best position, however, is not simply the
furthest away. Far-away positions are rare in a well-distributed
network.

5.4 Impact of Priority

We run our experiments in a setting where the legitimate base
stations occupy two frequencies of different priorities (3 and 5
respectively). We then study the success rate of an attacker that
operate on a different frequency for which we vary the priority:

Lower than the surrounding (2)

Equal to the low-priority frequency (3)
Between the other priorities (4)

Equal to the high-priority frequency (5)

A higher priority than the surrounding (6)

Values above or below the given values do not alter the effect of the
priority ranking. Figure 2 shows the impact of the priority of the
attacker’s frequency on the attack’s success. As signal strength is a
critical influencing factor to the attack’s success, we compare the
success of different priorities for individual signal strengths. We
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Figure 3: The impact of the signal strength on fake base
station attack success rate.

observe that impact of priorities is limited compared to the other
factors, giving a relative increase of up to 10% between the most
extreme scenarios.

Conclusion. The choice of frequency for a fake base station is, in
terms of the priority that it provides, the relatively least important
factor in our experiments since the performance range is the most
narrow. While our experiments show an advantage to occupying a
higher-priority frequency, this is, in practice, not always possible
due to a lack of spectrum space or capable hardware.

5.5 Impact of Signal Strength

A significant factor for the success of an attack is the power at
which the attacker transmits relative to the surrounding base sta-
tions, as shown in Figure 3. Our experiments show that transmitting
with a lower power can still yield a successful attack but with a
significant performance loss compared to a signal strength similar
to the benign station. Mobile network operators usually operate
base stations with a strength of around 30 dBm as seen in public
base station databases for different countries (cf. [8]). Commercially
available antenna equipment fit for use in a eNodeB is less pow-
erful, e. g., the Ettus USRP B200 achieves 10 dBm while the more
sophisticated USRP N310 will output up to 18 dBm [16]. According
to our evaluation, these values yield effective attacks against users
200 m to 400 m away.

Conclusion. Signal strength is the most significant influencing
factor in our experiments. Attackers with simple off-the-shelf hard-
ware can already be relatively successful but generally only attain
a small fraction of the success of attackers with signal strengths
closer to that of the legitimate network’s eNodeBs.

Overall, our experiments provides nuance to previous work
where a fake base station is just assumed to work. We see that
attacks in general are possible, but the wide range of performance
in different scenarios indicate that luring a victim into the malicious
connection cannot be achieved by default.

6 EXPERIMENTS: ATTACK DETECTION

After assessing the performance spectrum of attacks we continue
with an evaluation of detection mechanisms, which with the last-
ing prevalence of pre-5G systems are the only mitigation for fake
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Figure 4: Polynomial interpolation of F-measure for TAU-
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base stations. In particular, we focus on the two network-based
approaches, for which we extend the results of prior work and
ongoing discussions by a large-scale performance analysis.

6.1 Attack Setup

As a baseline for our defense evaluation, we use a parameter setup
that is representative of a capable attacker, as introduced in Sec-
tion 5 (see Table 1 in the appendix for details). In particular, the
attack uses a distance-based placement heuristic, a frequency and
thus priority used by surrounding cells, and a signal strength repre-
sentative of relatively low-cost off-the-shelf equipment (cf. Table 1).
The fake base station is active in the second half of the simula-
tion time, which provides us with ground truth information about
the detection results. Based on this ground truth, we define the
following detection decisions:

e True Positive TP. Correct detection of an attack.

e False Positive FP. Incorrect detection of a non-existent
attack.

e True Negative TN. Correct missing detection due to the
attack absence.

o False Negative FN. Incorrect miss of an ongoing attack.

For the deployment of a detection mechanism, we define TP inci-
dents as the primary detection priority. We initially investigate how
a mechanism can achieve a reliable detection rate. We then focus
on adjusting parameters to improve the trade-off with other aspects
of the detection, e. g., reducing the collateral damage through FP
detections.

6.2 TAU Detection

It is often possible to detect fake base station attacks on the NAS
layer when monitoring Tracking Area Update (TAU) messages [9].
More precisely, a UE affected by an attack reconnects to the benign
network once the connection with the attacker inevitably fails. As
part of this process, it sends a TAU containing a dummy TA code
for the previous connection. The detection is particularly successful
for many users but is limited to detecting only successful attacks.
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6.2.1 Parameters. There are two potential limitations to the TAU
detection. First, it has been observed in older generations that
some messages contain a dummy TA in practice even without an
adversary being present [9]. Second, not all UEs send a TAU after
an active fake base station attack. We consider three additional
characteristics in our simulation model to analyze the performance
of the TAU detection.

(1) Do UEs send a TAU after an attack?
(2) Do UEs send a dummy TA in normal operation?
(3) How many TAUs do UEs send?

In our experiments, we focus on the number of UEs that send
a TAU (first item). This rate depends on the baseband implemen-
tations of devices. According to prior work, we set the number of
UEs that send a dummy TA to 13 % [9] and set the number of TAUs
sent to a constant in all experiments.

6.2.2 Detection Mechanism. The detection mechanism uses an
anomaly metric that identifies suspicious TAU messages in the
network. To this end, we derive a histogram from the amount of
TAU messages with a dummy TA code recorded over time and then
identify values that exceed a threshold multiple of the average. An
example scenario can be seen in Figure 6.

6.2.3 Results. Figure 4 shows the success rates of the detection
mechanism. We deem the detection successful if it occurs within
30 s of the attack as this should give time to complete the attack;
any other detections are false positives. The threshold values we
test range between 2 and 5, with the best score achieved by a
value around 3. The threshold that is used in the procedure is the
threshold value multiplied by the average. This shows the trade-off
of this detection method: lower thresholds will detect more attacks
and lead to more false positives. In comparison, higher thresholds
have few false positives at the cost of a lower detection rate. With a
threshold of 3, results above 0.9 can be achieved when over 50 % of
users send a dummy TA code after an attack. The data used by [9]
showed only 16 % of users sending a dummy TA, at which point the
detection method is much less accurate. We further observe that,
with a small fraction of UEs sending a TAU, the detection is overall
less reliable.

6.2.4 Conclusion. To reach a reliable detection rate, a high per-
centage of users must send a TAU. At least for 2G and 3G, this was
not the case according to [9]. A real-world empirical study is nec-
essary to assess the current state of this phenomenon in baseband
implementations.

6.3 Measurement Report Detection

Measurement reports contain dynamic information about the net-
work status (§ 2.2). Such information can be used to detect anomalies
in the infrastructure [14] or to localize a fake base station [13]. In
our experiments, we benefit from the scalability of the simulation
model and focus on a specific variant of anomaly detection that
incorporates spoofed cell identities [4]. Note that detection when
non-spoofed cell identities are used is relatively trivial.

6.3.1 Parameters. To simulate this detection method, we use the
following setting:
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(1) The network operator has access to a coarse signal strength
distribution, i. e., it knows the signal strength for points on
a grid. We vary the granularity of this grid.

(2) The attacker spoofs the identity of a cell that is close by. In
reality, it could also choose a cell much further away, making
sure that there is no overlap in coverage. This contributes to
the attack performance, but also leads to clearer anomalies
and a clearer detection.

In our network setup, UEs are configured to send measurement
reports on events that can indicate the need for a handover, and
upon significant increase or decrease in serving signal strength, see
2.2. Configurations in which more measurement reports are sent
are possible, but this does incur some overhead.

We assume that when the user detects signals for the same cell
identity from multiple sources it reports the strongest. This is not
made exact in the specifications.

6.3.2  Detection Mechanism. In the case of a spoofed cell ID, the ad-
versary uses the identity of a benign cell in the network. During an
attack, the measurement report sometimes contains the attacker’s
signal alongside legitimate cells. This can be detected if the reported
signal strengths contradict expected values. An example of this can
be seen in Figure 7.

In our simulation, the network operator compares the data from a
single measurement report against all points in its granular view of
the signal strength map. It tries to find a location where a maximal
number of signal strength entries in the measurement report are
within some error margin of those in its signal map at a given
point. It reports an anomaly if it is impossible to find a sufficiently
matching point. Detection can then be performed using either the
number of anomalies occurring or further data extracted from the
anomalous report.

6.3.3  Results. In Figure 5, we present the results of detection based
on the number of observed anomalies. It shows for different thresh-
old values what proportion of experiments resulted in a number of
anomalies greater than the threshold. The threshold values used
for the detection decision depend on the length of the period the
measurement reports are analyzed and the number of measurement
reports sent. In our simulation the configuration with the best de-
tection (true-positive) rate while having negligible false-positive
rate only detects 15% of attacks. This means the detection chance
is relatively low, but with enough data this can still be reliable.

6.3.4 Conclusion. Different influencing factors challenge the reli-
able detection of measurement report-based approach. Signals are
noisy and cannot be predicted in a perfectly reliable way, which
can lead to false positive detections.

Furthermore, the amount of active UEs and the resulting number
of measurement reports influence how much information a network
can use. Overall, we conclude that the measurement reports can be
only used for attack detection in a limited capacity.

7 DISCUSSION

Our simulation provides valuable background for works based on
fake base station attacks, and shows how challenging these attacks
and defenses are in practice.
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Figure 5: Success chance of detection using the number of
anomalous measurement reports over time. We give results
for different levels of signal knowledge.

7.1 Simulation

We choose a simulation approach to be in full control of a large-
scale setup with hundreds of active UEs. It allows us to gather a
data set that covers a wide performance spectrum. We extend the
evaluations of prior work by a large-scale study that measures the
performance of attacks and defenses, and shows that we cannot
simply expect a successful fake base station attack in all but the
most favourable circumstances. We document the most important
limitations of fake base station modeling.

User Mobility. Users are independent of each other and walk
a random trajectory. In a real-world setting, groups and crowds
would lead to a different distribution of UEs in an area, which could
influence detection. Detection mechanisms do not currently take
this into account.

Signal. Our signal model approximates real-world signal distribu-
tions but ignores moving obstacles and other environmental factors.
This leads to less noise in the signal map.

Overall, we find that a simulation approach is the right method
to test the assumptions of prior work. Analyzing attacks and coun-
termeasures in a large-scale environment highlights challenges that
pose limitations for potential real-world deployment of attacks and
detection.

7.2 Challenges of Detection

We discuss limitations of fake base station detection mechanisms,
which are crucial to consider before implementing these in a real-
world environment.

7.2.1  Overhead. All detection mechanisms add overhead. Network-
based mechanisms in our evaluation (§6.2 and §6.3) rely on existing
mechanisms and do not require any additional data exchange. They
can still introduce computational overhead for the network. Other
network-based detections introduce protocol changes while requir-
ing less computation [4].

7.2.2  False positives. Most detection mechanisms introduce a level
of false positive detections due to noise and the dynamic transmis-
sion characteristics of a network. This leads to a trade-off between
reliable detection and collateral damage through incorrect alarms.
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8 CONCLUSION

In mobile networks, fake base stations are a crucial stepping-stone
for attacks that invade the privacy and the security of users. Al-
though prior work introduces different attack and detection mech-
anisms, limitations in their evaluation leave a blind spot regarding
their large-scale capabilities. In this work, we introduced a struc-
tured overview of fake base station attacks and defenses, and use a
specification-conforming simulation model that enables us to ana-
lyze their performance in a large-scale setting. Our results revealed
misconceptions regarding the performance of attacks and pointed
out challenges in the deployment of detection mechanisms. With
these findings, we aim to contribute to the ongoing discussions of
the 3GPP, and overcome limitations of prior work.
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SPECIFICATION FEATURES

In the simulation, we follow the specification and implement those
features that are relevant for a network-focused evaluation. We
denote fully implemented features with @and all features that
we partially implement with @. A partial implementation means
that we only cover those elements that are relevant in the context
of fake base station attacks and defenses. We do not implement
physical transmissions through a wireless channel (denoted as O).
All features of interest are summarized in Table 2.

NETWORK SETUP

In our network setup, we use fixed locations for base stations and
pre-compute a signal map for the entire space of the simulation area.
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Within the map, we use square buildings to represent obstacles like
buildings in an urban area. As the signal model incorporates reflec-
tions, the resulting signal map provides a non-uniform distribution
of signal strengths. Figure 8 illustrates an example of our map.
Lighter areas indicate higher signal strength and squares represent
obstacles.
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Figure 6: Example of TAU messages with the dummy TAC
value over time. The line indicates the message frequency;
the highlighted points show both true positive (TP) and false
positive (FP) detections of anomalies.

Without attacker

With attacker

Figure 7: Signal strengths as given in Measurement Reports
for a single base station, with the effect of the attacker spoof-
ing the station’s cell identity.


https://opensource.srlabs.de/projects/snoopsnitch
https://opensource.srlabs.de/projects/snoopsnitch
https://doi.org/10.1145/3372297.3417257

CSET 2024, August 13, 2024, Philadelphia, PA, USA Thijs Heijligenberg, David Rupprecht, and Katharina Kohls

Table 1: Overview of Model Parameters.

Category Parameter §5.3 §5.4 §5.5 §6.2 §6.3

Map 2000 2000 2000 2000 2000
Execution §4.3.1 Time 2000 2000 2000 1200+1200 1200+1200

" eNodeB 3 3 3 3 3

Users 500 500 500 500 500

Frequency 1GHz/2GHz 1GHz/2GHz 1GHz/2GHz 1GHz/2GHz 1 GHz/2 GHz
Network §4.3.2  Signal Str. 30 30 30 10 10

Priority 3/5 3/5 3/5 3/5 3/5

Fake BTS 1 1 1 1 1

Frequency 2GHz 1.5 GHz 2 GHz 2GHz 2 GHz
Attacker §4.3.3  Priority 5 2-6 5 5 5

Rel. Strength  —20dB 0dBto40dB 0dBto40dB 20dB —10 dB to 30 dB

Table 2: Covered Functionality of 4G Specification.

Layer Feature Function Part  Status
Phy Transmission * - @)
Signal[5] RSRP 9.1.2 [ )]
SIB[7] SIB2 6.3.1 [ )]
SIB3 6.3.1 ()]
SIB5 6.3.1 [ ))
PLMN Selection 5.1 [ )
idle mode 522 (D)
Cell selection 5.2.3 o
Cell )
Jection[2] Cell resele.ct10n 5.2.4 o
Selectio Cell camping 5.2.6 [ )
RRC Leaving connected 5.2.7 ©
TA registration 5.4 o
System information 52 [ ))
Paging 5.3.2 o
RRC establishment 5.3.3 o
Connection  RRC reconfiguration  5.3.5 o
control[7] RRC release 5.3.8 o
UE leaving connected 5.3.12 [ )
Measurements 5.5 o
Attach procedure 5.5.1 ()
NAS[3] Detach procedure 5.5.2 [ )]
TAU procedure 5.5.3 (D)
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Figure 8: Example of possible trajectory for a user, with base stations placed at centered positions. Signal strength is shown in
the background.

Table 3: Cell reselection validation tests and results

Description Oneplus Huawei Expectation

Signal loss lose coverage when srx_lev <0

Intracell reselect when target is stronger

> q_offset_cell reselect when target plus offset is
stronger

> q_hyst reselect when target plus offset is
stronger

> s_intra_search no reselection if

srx_lev>s_intra_search

Equal priority reselect when target is stronger

> q_freq_offset reselect when target plus offset is
stronger

> q_cell_offset reselect when target plus offset is
stronger

reselect when srx_lev <0
reselect when srx_lev
<thresh_serving_low

Lower priority
> thresh_serving_low

o0 © 00 S o o0 O

Higher priority o
> s _non_intra_search ©

reselect always
no reselection if
srx_lev>s_non_intra_search

i: Test passed, O-= Test failed, ©= Test failed but effect is not mandatory

o 060 e 00 © O OO0 e
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