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Abstract. The Tor anonymity network represents a rewarding target
for de-anonymization attacks, in particular by large organizations and
governments. Tor is vulnerable to confirmation attacks, in which pow-
erful adversaries compromise user anonymity by correlating transmis-
sions between entry and exit nodes. As the experimental evaluation of
such attacks is challenging, a fair comparison of passive traffic analysis
techniques is hardly possible. In this work, we provide a first compar-
ative evaluation of confirmation attacks and assess their impact on the
real world. For this purpose, we release DigesTor, an analysis framework
that delivers a foundation for comparability to support future research
in this context. The framework runs a virtual private Tor network to
generate traffic for representative scenarios, on which arbitrary attacks
can be evaluated. Our results show the effects of recent and novel attack
techniques and we demonstrate the capabilities of DigesTor using the
example of mixing as a countermeasure against traffic analysis attacks.

Keywords: Tor, Traffic Analysis, Confirmation Attack, Mixing

1 Introduction

With more than 2 million daily users [29] and 7000 active relays, Tor [28] is
the most prominent example of an anonymity system that took the step from
a scientific concept into the real world. Tor protects user privacy on the Inter-
net by separating the origin of a connection from the requested services using
onion-encrypted circuits. This mechanism cannot differentiate between benign
use cases like censorship circumvention and malicious or illegal activities, but it
protects the identities of both groups equally. While legal authorities are moti-
vated in revealing identities to prosecute criminal behavior, censoring authorities
can apply the same techniques to identify the origin of unwanted contents or links
and thereby maintain control over the dissemination of information.

The existence of successful de-anonymization attacks against Tor is tremen-
dously impactful because of its broad use. As a consequence, many classes of
attacks have been introduced that attempt to reveal sensitive information about
entities in the network [1, 8, 19]. These academic approaches are an essential
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building block for improving Tor, by more clearly defining the threat model it
must address. At the same time, we may wonder if documented research attacks
fully encapsulate the threat model experienced by Tor in practice. Scientific at-
tacks can pose a serious threat and affect millions of users, but are driven by a
focus on novelty rather than realism. This leads to a fundamental challenge of
estimating an attack’s real-world impact.

Our focus in this work is on passive traffic analysis attacks. These attacks are
a current concern to the Tor community, in which user anonymity is compromised
by an adversary correlating transmissions at the entry and exit of the circuit [20,
26]. Recent work [1,2,14,16] has demonstrated that an autonomous system (AS)-
level adversary can successfully conduct confirmation attacks, correlating the
characteristics of transmitted data to identify connections within the network.

The weakness to correlation is aggravated by routing attacks and nation-state
adversaries with capabilities to surveil substantial fractions of the network. Bor-
der Gateway Protocol (BGP) attacks like RAPTOR [27] can increase the efficacy
of confirmation attacks by directing traffic through an adversarial AS. This al-
lows adversaries to have a near-total view of the network, a threat model not
addressed by Tor. Mitigating traffic confirmation attacks, in particular against
a global adversary, remains an open research problem [30].

Tor threat research is lacking comparable evaluation methodologies. Instead,
analyses have been very divergent, ranging from theoretical models on the ba-
sis of statistical assumptions [3, 4], to approximate simulation systems [11], to
experiments on the live Tor network [32, 33]. Theoretical models provide upper
and lower bounds, but are limited by the assumptions made. Simulated sys-
tems can incorporate more real-world characteristics and often analyze network
characteristics at a realistic scale, but only approximate certain parameters like
the dynamics of an underlying network. The complexity of real-world network
conditions makes it impossible to define holistic models that cover all potential
cases, a fact that only allows for an estimation of effects on theoretical models
and simulations. In contrast, experiments on the live Tor system demonstrate
realistic conditions. However, especially in the context of traffic analysis attacks,
work on the live network puts users at risk and is ethically discouraged [31].

Beyond the individual strengths of each of these methods, their diversity
has led to a fundamental drawback: it is difficult to compare different attacks
or understand their combined impact. This lack of comparability hinders the
ability to understand existing attack vectors and progress defensive research in
response.

We introduce DigesTor to address this fundamental shortcoming. DigesTor
is an evaluation framework that guarantees comparability for recent, current,
and future passive traffic analysis attacks, combining the strengths of simulated
and real-world evaluation. The framework runs a virtual private Tor network
to generate traffic for representative scenarios on which arbitrary attacks can
be evaluated. The network uses virtual machines with individual CPU cores for
each node and transmissions of realistic traffic through the actual network stack.
Intermediate links simulate realistic network conditions using traffic shaping
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with parameters from empirical measurements in the live Tor network. This
experimental setup increases realism over artificial traffic generation in simulated
environments [11], can provide realistic link models, and satisfies the ethical
guidelines for Tor research.

DigesTor includes a suite of state-of-the-art attack techniques that we eval-
uate using our framework. As a starting point for future work, this analy-
sis provides a first performance comparison of existing attacks for their de-
anonymization capabilities. Also, we demonstrate DigesTor by evaluating the
use of delays as a potential countermeasure. The results of our attacks are sum-
marized on https://digestor.selfip.org to demonstrate the features of our
framework.

In short, our major contributions are:

– We release DigesTor, a comprehensive evaluation framework for passive traf-
fic analysis attacks on Tor. This framework provides a basis to enable a fair
comparison of existing and future attacks, is made publicly available, and
includes an extensive corpus of transmission traces.

– We demonstrate the usefulness of DigesTor to evaluate the performance of
state-of-the-art attack techniques. This leads to a first empirical overview of
attack performance for different exemplary use cases and is a starting point
for the development of future techniques.

– We use DigesTor to analyze low-latency mixing as a potential countermea-
sure to passive traffic analysis attacks. Results show that mixing, in fact,
can counter confirmation attacks at a limited performance overhead only.

2 Traffic Analysis in Tor

Tor is a circuit-based transmission system that selects paths over network relays
to form circuits. Usually, a circuit consists of one entry node, one middle node,
and one exit node. Through successive layers of encryption to each relay, Tor
separates the source of data from its destination, offering anonymity. We survey
the attacks known to exist against Tor as follows and discuss two empirical
adversary models.

2.1 Traffic Analysis Attacks

Tor defends against a set of known attack vectors, for instance, by ensuring
unlinkable byte patterns through layered onion encryption. However, Tor ensures
low-latency transmissions that trade performance for vulnerability against traffic
analysis attacks. We introduce different classes of such attacks as follows.

In general, traffic analysis attacks exploit side channel information of en-
crypted transmissions through the network. This allows an adversary to monitor
activities in the underlying network and reveal related connections. We distin-
guish the attack type, if an attack is (A/P) active ( ) or passive (#), adversary
model (Adv.) (G#: partial adversary,  : global adversary), the evaluation setup

https://digestor.selfip.org
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( : evaluated in live Tor, G#: reduced private network model, #: theoretical
model), the consideration of background noise ( : real noise, G#: empirical noise,
#: statistical noise), and the consideration of different application types (App.)
( : yes, #: no). Furthermore, we document whether a traffic metadata feature
was used and define an attack metric (Corr: Correlation, MI: Mutual Informa-
tion, Enc: Encoding, Cell: Cell Manipulation, Blend: Blending, Stat: Statistical
Analysis.)

Table 1. Overview of end-to-end confirmation attack classes. In the Traffic Analysis
Framework, we focus on passive attacks and flow comparison attacks.

Attack Ref. A/P Adv. Setup Noise App. Feature Metric

Flow Comp.
[15, 26] #  G# G# # iat Corr

[14, 35] #  G# G# # iat MI

IXP Samples [21] # G#    iat Stat

Disclosure [3, 4, 13,18] #  # # # - Stat

Watermarking [1, 7, 8, 32]  G#    iat Corr

Coding [16,17,24,34]  G#   # - Enc

Protocol [6, 9]  G#   # - Cell

n-1 [5, 23,25]   # # # - Blend

Passive Flow Comparison. A passive adversary monitors traffic at strate-
gic points in the network and tries to detect related streams to de-anonymize
users. This is accomplished through similarity/distance metrics that reveal re-
lations between traffic measured at the source (client) and destination (server)
of a connection. For this comparison, features like the timing between arriving
packets [14, 26] are derived from unencrypted packet headers or transmission
dynamics.

Further Attack Classes. In the literature we find further classes of passive at-
tacks, e. g., disclosure attacks [4] or IXP (Internet exchange point) sampling [21]
use statistical methods to compute the probability of two streams being related.
An active adversary extends the scope of passive attacks by interference with
the traffic stream, e. g., for injecting watermarks [1] or specific codes [16] that
help to distinguish individual streams.

Even though the above attack landscape is motivated by the shared goal of
learning sensitive information about anonymity systems and their users, we see a
high diversity in their evaluation approaches. One example for this are statistical
attacks, where we face evaluation results either from the live network [21] or a
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fully theoretical setup [4]. DigesTor overcomes this diversity by providing a con-
sistent evaluation framework for passive flow comparison attacks. In particular,
the use of DigesTor enables us to analyze the technical limitations of existing
attacks. Furthermore, we introduce two empirical adversary models as follows.

2.2 Empirical Adversary

Besides their technical limitations, the success of traffic analysis attacks further
depends on the adversarial network coverage, i. e., the probability of monitoring
the correct Tor relays increases with higher coverage [27]. In a worst-case sce-
nario, a global adversary has access to all traffic in the network. While this is a
highly restrictive assumption and not considered in Tor’s original attacker model,
recent empirical studies reveal the potential threat of colluding and nation-state
adversaries that achieve a significant coverage of the network. We derive two
empirical attacker models from this:
1. Partial Passive Attacker : Approximately 40 % of Tor circuits are vulnerable

to confirmation attacks by a single malicious AS [22]. This threat repre-
sents the view of an “average” adversary—or the impact of compromising
an individual AS at the core of the Internet.

2. Strong Partial Passive Attacker : When ASes are considered on the state
level, an adversarial nation could potentially compel multiple ASes within
its governance to collude in correlation. Such an adversary could observe as
many as 85 % of circuits [27].

However, for our experiments (see Section 5), we consider the global passive ad-
versary as the upper bound. This encompasses weaker models, where a decreased
network coverage limits the success probability of an attack (see Section 4.4).

3 DigesTor Framework

DigesTor is an open source analysis framework that provides comparability for
the evaluation of passive traffic analysis attacks. We provide a high-level overview
and introduce its evaluation set in the following.

3.1 System Components

DigesTor provides two core features: a Traffic Analysis Framework and a Virtual
Private Tor Network. The Traffic Analysis Framework applies a set of attack
techniques from related work to traces of our experimental network and outputs
a performance assessment regarding the success of existing confirmation attacks.
The framework covers five comparison metrics, which estimate the similarity or
distance between observations in the network, i. e., pairs of client and server
traces.

The Virtual Private Tor Network is used to generate network traffic that
corresponds to typical use case scenarios. The traces are the monitored traffic
streams an adversary would gather in a confirmation attack and are thus used
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as an input to generic passive end-to-end confirmation attacks. We use a virtu-
alized private network for two main reasons. First, isolating the setup protects
users of the live Tor network and ensures we do not violate the existing ethical
guidelines for Tor research [31]. Second, the technical characteristics of a virtual
setup provide significant advantages compared to a simulated setup. Using vir-
tual machines for all nodes in the network, we utilize the actual protocol stack
and transmit realistic application data. To improve the realism of our private
network, we use empirical link models to imitate transmission delays monitored
in the live Tor network.

3.2 Traffic Analysis Framework

In the following, we detail the traffic analysis component of DigesTor. Recent
work suggests two types of metrics for flow comparison attacks. Correlation-
based [15, 26] attacks compute the similarity in monitored traffic and identify
relations between streams using the inter-arrival times, i. e., time periods be-
tween packets. Mutual information [14, 35] is a measure of the dependence of
two streams and estimates similarity based on the entropy of observed pairs.
Again, inter-arrival times are mentioned as a traffic feature for this type of at-
tack.

From the current state of passive end-to-end confirmation attacks, we adopt
the Pearson correlation coefficient (P) and Mutual Information (MI). We extend
this by the Root-Mean-Square Error (RMSE) as a measure of distance between
two observations, and a scalar comparison (SC) of features, in which we compare
the sum of a metadata vector. Moreover, we sample an optional preprocessing
step with the combination of the principal component analysis and Pearson
correlation (PCA-P).

Eventually, we measure the success of an attack through the number of cor-
rectly guessed client/server connections, defined as success rate, and compare its
improvement over random guessing, defined as ∆RG. The success rate describes
the relative number of correct guesses in a setup, whereas the ∆RG indicates the
strength of an attack. Furthermore, we use the area under the curve (AUC) for
CDFs (cumulative distribution function) that summarize the results for combi-
nations of multiple scenario setups. The AUC is a measure of the robustness of
a successful attack, i. e., a smaller AUC indicates higher success rates.

3.3 Helpers

Besides the core components of DigesTor, we utilize a parser for transforming
raw traces of network traffic to aggregated metadata vectors. More precisely, we
extract a set of five features fi: (f1 = cnt) packet counts, (f2 = iat) inter-
arrival-timing, (f3 = len) packet length, (f4 = ttl) time to live, and (f5 = wis)
TCP window size. This metadata can be read from the header information of a
TCP/IP packet (len, ttl, wis) or derived from packet occurrences (cnt, iat).

Using a window-based aggregation [15, 26], an average of all packets falling
into one window is collected, e. g., for a measurement of 10 s and a window
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length of 0.1 s, we aggregate data in 100 equidistant windows. This results in
time vectors of metadata information (fi,1, fi,2, · · ·, fi,n) with features fi over n
time windows.

This feature set is parsed for each connection and filtered in the downlink
direction (data flow from server to client). The feature set is non-exhaustive
but extends the standard features in the literature (packet counts, inter-arrival
times) with three more characteristics (packet length, window size, time to live)
whose relevance will be part of the experimental analysis in Section 5.

4 Experimental Setup

In our experiments, we perform a comparative performance evaluation of attack
metrics and demonstrate DigesTor by analyzing mixing as a potential counter-
measure against traffic analysis attacks. We introduce the experimental setup,
define the analyzed use case scenarios, and discuss the influence of Tor’s network
infrastructure as follows.

4.1 Technical Specification

Our experimental network (cf. Fig. 1) is defined by the different node types, i. e.,
clients, servers, and Tor relays, and by the topology that connects them.

Tor Network

Client

s

Bridge Guard
Middle,

Authority

Exit,

(Mix)

Servers

1GB.bin

1Mbit/s 1Mbit/s

Traffic 
shaping

tcpdump

Fig. 1. Clients connect to servers through circuits of three relays. The bridge applies
empirical traffic shaping for each client connection individually. Servers provide random
binary files for downloads or proxy web requests [10].

Nodes. Entities in the network are configured to serve as i) clients that make
requests through Tor, ii) servers that provide requested data, and iii) relay nodes
that build the private Tor network. Each client connects to a predefined server
and follows a use case scenario which includes either download requests via the
cURL library or website browsing using the browser automation framework Se-
lenium and a headless browser (developed as part of Mozilla Firefox ). Requests
are made through the SOCKS5 proxy at port 9050. They are synchronized via
NTP for all clients, i. e., experiments start and end at the same time. The server
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nodes provide file downloads over HTTP at port 80 and reverse proxy requests
to a set of Alexa Top 50 websites at port 80 and 443. We use three relay nodes
of which one is configured as guard, one as middle and authority, and one as exit
relay. The relay, authority, and client nodes run Tor version 0.2.9.8.

Network. We use an empirical link model for the downlink connection of
all clients. The link model adds per-packet delays drawn from measurements of
arbitrary circuits in the live Tor network, which are individually assigned for each
connection. This traffic shaping is accomplished by a bridge interface, where each
client connection samples from an individual delay distribution. For the network
topology either a directed setup, using 1:1 connections between n clients and
n servers, or a grouped setup, using n:2 connections between n clients and two
servers, is used. The number of relays is fixed to three.

Hardware. The VMs run in a cloud space hosted in one central location,
each node is assigned a distinct CPU core. The full setup can utilize up to
63 cores, 132 GB of RAM, and 504 GB of disk space. We capture the traffic of all
client and server nodes using tcpdump. Raw network traces are gathered on one
central file server for further processing outside the Tor network environment
and therefore do not interfere with the performance of network nodes.

4.2 Scenarios

We test individual topologies of 2 to 30 clients to 2 to 30 servers in a Directed and
of 2 to 30 clients to two servers in a Grouped setup. Furthermore, we distinguish
three individual application models:
– Static download. The user requests a file from the server via cURL and

permanently loads it during the entire duration of the measurement.
– Random download. Each user requests a file from the server via cURL,

whereas on/off periods for the downloads are randomized for the entire du-
ration of the measurement. Off periods are uniformly distributed between
2 s to 10 s, on periods are uniformly distributed between 2 s to 5 s.

– Browsing. From the Alexa Top 50 web pages, each client requests a random
set of sites using a scripted headless browser. Between site requests, clients
wait for a random period with a uniform distribution between 2 s to 5 s before
the next request is sent.
We emphasize that the randomization of on/off periods can influence the

results, as a higher variance in the duration of off periods helps to distinguish
individual transmissions. Consequently, our results can only represent the pa-
rameter choices made above. We discuss the definition of more sophisticated use
case scenarios in Section 6.

4.3 Comparison of Attack Metrics

In the following, we apply the Traffic Analysis Framework (combinations of fea-
tures cnt,iat,len,ttl,wis and metrics P,MI,RMSE,SC,PCA-P) to all combina-
tions (directed, grouped; static, random, browsing) and an increasing number
of clients n = 2 to 30; each experiment is repeated for five random repetitions.



DigesTor 9

We compute the general attack success (AS: how many connections were guessed
correctly?), the improvement over random guessing (∆RG: how much better was
the attack compared to an uneducated guess?), and the area under the curve
(AUC: how convincing and robust was a result?) of the cumulative distribution
function (CDF) of results.

4.4 Tor Network Infrastructure

While our experimental setup covers the technical comparison of attack metrics
and traffic features, we are further interested how Tor’s network infrastructure
influences the organizational aspects of an attack. Therefore, we discuss the
scalability of our setup and the relay selection process as a preliminary step to
the performance comparison in Section 5.

Scalability In the setups we demonstrate, clients run at a maximum rate of
1 Mbit/s. For the described Grouped and Directed scenarios, this translates into
a throughput of 30 Mbit/s passing through each of the relays. This scale places
these relays within the top 10 % of active Tor relays by bandwidth. Experiments
with fewer active clients would approximate the traffic of less active relays, with
approximately 2

3 of relays transmitting at least 4 Mbit/s of traffic, the level of
traffic we simulate in our smallest experiments. We do not model the number
of active connections experienced by Tor relays. While we can expect a total of
500,000 active clients at any given point [12], it is less clear how those clients
are distributed across relays and bridges. However, the median relay will have
less than 50 active clients regardless of the distribution. With up to 30 parallel
connections our network setup achieves a similar relay workload.

Relay Popularity Tor’s network infrastructure is skewed towards the countries
where we find the most Tor supporters, e. g., Germany (19.4 %), the US (18.7 %),
and France (14.2 %) maintain more than half of the entire network. Furthermore,
higher bandwidth relays are preferred in the circuit buildup procedure. An at-
tacker can benefit from these characteristics and focus on frequently used nodes,
e. g., it is possible to cover 75 % of all selected exit relays by monitoring approxi-
mately 26 % of nodes (cf. Fig. 2). This situation supports the empirical adversary
models (Section 2) and is incorporated by the attack setup of DigesTor.

5 Evaluation

We use the above experimental setup of DigesTor for a first comparative analysis
to (i) derive the best performing metric and feature combinations for each setup,
compare the characteristics of different (ii) topologies and application types, and
(iii) analyze mixing as one possible countermeasure against traffic confirmation.
Finally, we (iv) give an overview of the takeaway messages of our evaluation.
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Fig. 2. Distribution of Exit relay popularity and respective advertised bandwidth, mea-
sured for a total of 100,000 Tor standard circuits.

5.1 Metrics and Features

As initial research question, we address the performance comparison of attack
metrics and metadata features. Beginning with the overall global performance, we
get a first impression of the impact of confirmation attacks in generic scenarios.
We continue with an analysis of individual combinations of metrics and features
for all scenarios.

Global Performance. In our first evaluation step, we identify the overall best-
performing metrics and features for a combination of all scenario setups. Figure 3
summarizes the attack success, i. e., the relative number of successful connection
identifications, for all traces in the DigesTor corpus. Each box represents the full
performance range of a metric/feature, whereas we focus on the comparison me-
dian (horizontal bar) results. We see that Mutual information (MI) provides the
best overall result (median=0.48) in a global comparison. This result summarizes
the attack success for all combinations of MI with the given traffic features and
applies for all scenarios introduced in Section 4.2. In the comparison of metadata
features the time to live field (ttl) performs best (median=0.44).

Individual Performance Figure 4 highlights the performance of all individual
combinations of metrics and features. Darker tiles in the heat map indicate
a higher attack success at a specific experimental setup. Table 2 summarizes
these results and provides an overview of the best performing metric and feature
combinations for individual setups. We see that (MI,iat) performs best in a
global comparison, i. e., it is the most robust combination while performing 23 %
better than random guessing. Overall, iat is the most reliable metadata feature
for most scenarios, whereas we see varying metrics for individual setups.

What Metric and Feature Combination Performs Best? Without any
prior knowledge of the use case and number of concurrent transmissions, MI/ttl
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Fig. 3. Comparison of attack success for individual metrics (red) and features (blue)
for all topologies and applications combined. Results show the median (horizontal bar
in box) aggregated for 2 clients to 30 clients in comparison to the average success of
random guessing (dashed line).

Table 2. Best performing metric and feature combinations. Results show the improve-
ment over random guessing (∆ RG), global performance (AUC), and average success
rate (AS) through all experiments.

Scenario Metric Feature ∆ RG AUC AS

Directed P ttl 35 % 0.72 0.49

Grouped MI iat 22 % 0.50 0.55

Random RMSE cnt 52 % 0.48 0.80

Static MI iat 16 % 0.65 0.46

Browsing SC iat 7.4 % 0.70 0.34

Global MI iat 23 % 0.61 0.52

outperform an average random guessing attack. As soon as it is possible to adjust
to a certain scenario, the targeted combination of a metric and feature helps to
increase the improvement over random guessing.

5.2 Scenarios

Different topologies have two characteristics that influence the success of an at-
tack. First, grouped setups, where n clients connect to only 2 individual servers,
induce more noise through concurrent transmissions for traffic that is captured
at the server. Such noise complicates the application of comparison metrics and
destroys connection-individual parameters. One example for this is the attack
success for a random download in the directed (cf. Fig. 4(c)) and grouped
(cf. Fig. 4(d)) topology. We see that it is possible to distinguish connections
even for high user numbers in the directed setup (∆RG=35 %), whereas we



12 K. Kohls et al.

MI P PCA−P RMSE SC

0
10

20
30

cn
t

ia
t

le
nttl

w
is

cn
t

ia
t

le
nttl

w
is

cn
t

ia
t

le
nttl

w
is

cn
t

ia
t

le
nttl

w
is

cn
t

ia
t

le
nttl

w
is

N
um

. C
lie

nt
s

0.000.250.500.751.00

(a) Directed Static

MI P PCA−P RMSE SC

0
10

20
30

cn
t

ia
t

le
nttl

w
is

cn
t

ia
t

le
nttl

w
is

cn
t

ia
t

le
nttl

w
is

cn
t

ia
t

le
nttl

w
is

cn
t

ia
t

le
nttl

w
is

N
um

. C
lie

nt
s

0.000.250.500.751.00

(b) Grouped Static
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(c) Directed Random
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(d) Grouped Random

MI P PCA−P RMSE SC

0
10

20
30

cn
t

ia
t

le
nttl

w
is

cn
t

ia
t

le
nttl

w
is

cn
t

ia
t

le
nttl

w
is

cn
t

ia
t

le
nttl

w
is

cn
t

ia
t

le
nttl

w
is

N
um

. C
lie

nt
s

(e) Directed Browsing
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Fig. 4. Average performance of all metrics and features for both topologies and all
application types. The heatmap indicates the relative attack success, ranging from 0,
no success, lighter to 1, high success, darker.
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Fig. 5. Cumulative Distribution Function of average attack success for the comparison
of three use case scenarios.
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Fig. 6. Cumulative Distribution Function of average attack success for the comparison
of directed and grouped network topologies.

lose too much information in the grouped experiments (∆RG=22 %). Second,
the number of candidates for guessing a connection is limited to two serves in
the grouped setup. Consequently, we experiencemore stable results for grouped
topologies (AUC=0.5) than in directed setups (AUC=0.72) with overall more
connection candidates.

What Scenarios Favor Attacks? Guessing on fewer candidates (grouped
topology) makes it easier to achieve positive success rates for an attack. At
the same time, it becomes harder to distinguish individual traffic characteristics
through simple comparison metrics. Our results show that random downloads,
where a high amount of data is sent in individual patterns, provide the best
improvement over an uneducated guess. In combination with a setup that reduces
noise of concurrent transmissions, this leads to a successful attack even for higher
user numbers. The same does not apply to user-individual browsing, where traffic
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patterns are unique but the amount of data sent is insufficient for distinguishing
connections reliably.

5.3 Countermeasures.

We can counter traffic analysis by perturbing traffic features during the trans-
mission process. One example for this is mixing [35], where intended delays for
packets change the timing relations of a connection. As such countermeasures can
decrease a system’s performance, we analyze mixing concerning its protection
capabilities and performance impairments.

Implementation. We implement a mix within the Tor code and deploy it in
the exit relay of our experimental setup. The mix delays TLS records within Tor
before they are emitted for further transmission; it uses a defined delay duration
(time held back) and rate (relative amount affected). TLS records are, within a
Tor relay, closest to the transport layer on which an adversary monitors connec-
tions. We, therefore, expect a maximum effect on traffic analysis attacks. In the
following, we give an example for different mix delays (time added to sending of
TLS records) and mix rates (a portion of records affected by mixing). The mix
does not provide any differentiation of TLS records from different connections,
e. g., mixing is applied to a fraction of all records in the relay.

Results. At a static mix rate of 20 % (directed network topology, static down-
load application), we achieve an AUC in the range of 0.9 to 0.95 for delay du-
rations between 10 ms to 1 ms, which represents at least 20 % improvement over
the unmixed attack success (AUC=0.72). At the same time, we see that varying
mix rates do not influence the attack success significantly.
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Fig. 7. Distribution of end-to-end delays measured in our experimental setup. Results
show slightly increasing round trip time for mixed setups, where we tested a static
mixing rate of 20 % and increasing mix delays.
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Moreover, we analyze the end-to-end delays for increasing mix delays at a
fixed rate of 20 %. Results show slightly increased delays for mixed connections,
while the performance impairments are still in an acceptable range. Does Mix-
ing Counter Attacks? Our results support the concept of mixing, whereas the
delays can only protect a subset of metadata features. The achieved obfuscation
is sufficient for casual scenarios at an acceptable performance overhead, but at
this price cannot guarantee perfect traffic analysis resistance.

5.4 Overview of Results

We summarize the results of our experimental evaluation as follows.
1. Metrics and Features Combined. For all topologies and applications we

found a metric and feature combination that outperformed random guessing
(Table 2). These combinations do not focus on a single traffic feature, hence,
an isolated obfuscation of metadata features cannot protect against traffic
analysis in general.

2. Topologies and Applications. Even though we found topologies and ap-
plications that hinder an attack, the attack framework outperformed random
guessing attacks by 26.48 % on average (individual scenarios) and 23 % in
generic scenarios.

3. Affordable Countermeasures. We use the comparative evaluation of Di-
gesTor to demonstrate low-latency mixing as a countermeasure to traffic
analysis attacks. Such effects can be achieved at minimal additional delays
of 1 ms, which renders this solution an actual option for the live system.

6 Discussion

After demonstrating the experimental benefits of our traffic analysis framework,
we now introduce how DigesTor can be used to support future research and what
limitations the system faces at the moment. Furthermore, we discuss the ethical
guidelines for this work and the potential of mixing as a countermeasure.

6.1 Goals of DigesTor

The goal of our evaluation framework is to accelerate the deployment of new
defenses. To achieve this, we must provide a set of conditions which appropriately
represent Tor’s infrastructure, but also operate at sufficient scale to approximate
the parameters of the real network.

How to use DigesTor? The results of this work provide a first comparative
overview of attack metrics and metadata features. Our work supports future
research as follows.
– Trace Corpus. Our trace corpus represents standard topologies and ap-

plication types and can be used to evaluate generic passive attacks without
harming users of the live network. Furthermore, this once more supports the
comparability of results.
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– Attacks. The traffic analysis framework already provides a representative
set of metrics and can be extended further by new attack metrics and meta-
data features. This allows comparing new approaches with the success of
existing work.

– Defenses. Following the example of mixing as a countermeasure, future
defensive research can use the performance comparison to assess the effects
of novel countermeasures.

Limitations. For the use case scenarios, we approximate real user behavior by
simple models, e. g., through randomized web requests to a restricted set of sites
or random download patterns. This does not represent the user behavior that
defines the traffic patterns in a real-world scenario. In end-to-end confirmation
attacks, a matching between client and server traces is the primary interest.
Adding user models to the experimental setup in a future revision of DigesTor
helps to create more realistic scenarios, but is not crucial for the technical eval-
uation of attacks.

6.2 Ethics

In compliance with the Tor Ethical Research Guidelines [31], we designed this
work in a way that does not harm users of the live network. We emphasize
that especially the experimental evaluation of traffic analysis attacks can cause
damage to real-world users and should always be conducted in a controlled envi-
ronment. In turn, this applies to the analysis of countermeasure implementations
whose security yet has to be proven.

6.3 Mix Countermeasure

Our TLS mix concept is implemented at exit nodes and can support a slow
rollout over the existing network. Mixing of TLS records means there cannot
be mixed and unmixed connections at the same time in one relay, reducing the
unmixed bandwidth for the sake of increased security. However, not all nodes in
the network must provide mixing, as a small fraction is sufficient to introduce
uncertainty for an adversary across many active circuits. Along with the dynamic
adaption of mix parameters, this makes the mix concept flexible: instead of using
fixed setups, mix parameters can be coupled with monitoring the current network
status and load.

7 Conclusion

DigesTor is an appeal to comparability in security research on Tor. The attack
landscape of current research offers various classes of offensive work that might
or might not pose a threat to the live Tor network. With DigesTor we share two
core features: We generated a first traffic analysis corpus of this kind that we
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share to support the comparability of future research. The second core feature is
the Traffic Analysis Framework, which applies a set of recent attack techniques
for comparative performance analysis. To demonstrate the benefits of DigesTor,
we analyze mixing as a potential countermeasure against passive traffic analysis
attacks. Our results indicate that mixing, in fact, hinders the success of otherwise
successful confirmation attacks.
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