

RUHR-UNIVERSITÄT BOCHUM

DIGESTOR

Comparing Passive Traffic Analysis Attacks on Tor

Katharina KohlsRuhr-University Bochum

Christina Pöpper NYU Abu Dhabi

Phileas Fogg:
Bet he could travel the world in 80 days

Detective Fix:
Assumes Fogg robbed a bank
and tries to catch him

The Fogg-Dilemma

Book a balloon flight via Internet. Don't reveal any details to Detective Fix!

Outline

Context: Traffic Analysis Attacks on Tor

Motivation: Diversity in Related Work

DigesTor: Achieving Comparability

Traffic Analysis Attacks on Tor

De-Anonymizing users from encrypted traffic

Cyrrus Smith Balloon Inc.

Flight Plan

Mondays and Thursdays: Departure at sunrise

Tor: Anonymous Connections

Cyrrus Smith Balloon Inc.

Flight Plan

Mondays and Thursdays: Departure at **sunrise**

Traffic Analysis

Cyrrus Smith Balloon Inc.

Flight Plan

Mondays and Thursdays: Departure at sunrise

Attack: Correlation

Cyrrus Smith Balloon Inc.

Flight Plan

Mondays and Thursdays:
Departure at sunrise

Departure at

Diversity in Evaluation Techniques

Comparing Apples and Oranges

Evaluation Procedure

Research on Traffic Analysis Attacks

Choose Evaluation Setup

Conduct Attacks

Draw Conclusions

Example: Different Setups

Statistical Model

Simulation Model

Live Network

Example: Different Setups

Statistical Model

Live Network

Related Work Comparison

Attack	Ref.	A/P	Adv.	Setup	Noise	Арр.	Feature	Metric
Flow Comp.	[1,2]	0		•	•	0	iat	Corr.
	[3,4]	0		•	•	0	iat	MI
IXP	[5]	0	•				iat	Stat.
Disclosure	[6-9]	0		0	0	0	-	Stat.
WM	[10-13]		0				iat	Corr.
Coding	[14-17]		•			0	-	Enc.
Protocol	[18,19]		0			0	-	Cell
n-1	[20-22]			0	0	0	-	Blend

Statistical Models

Attack	Ref.	A/P	Adv.	Setup	Noise	App.	Feature	Metric
Flow Comm	[1,2]	0		•	•	0	iat	Corr.
Flow Comp.	[3,4]	0		•	•	0	iat	MI
IXP	[5]	0	•				iat	Stat.
Disclosure	[6-9]	0		0	0	0	-	Stat.
WM	[10-13]		0				iat	Corr.
Coding	[14-17]		•			0	-	Enc.
Protocol	[18,19]		0			0	-	Cell
n-1	[20-22]			0	0	0	-	Blend

Simulation Models

Attack	Ref.	A/P	Adv.	Setup	Noise	App.	Feature	Metric
Flow Comp.	[1,2]	0		•	•	0	iat	Corr.
	[3,4]	0		•	•	0	iat	MI
IXP	[5]	0	•				iat	Stat.
Disclosure	[6-9]	0		0	0	0	-	Stat.
WM	[10-13]		0				iat	Corr.
Coding	[14-17]		•			0	-	Enc.
Protocol	[18,19]		0			0	-	Cell
n-1	[20-22]			0	0	0	-	Blend

Comparison Framework

Attack	Ref.	A/P	Adv.	Setup	Noise	Арр.	Feature	Metric	
Flow Comp.	[1,2]	0		0	0	0	iat	Corr.	
	[3,4]	0		•	•	0	iat	MI	
IXP	[5]	0	0				iat	Stat.	
Disclosure	[6-9]	0		0	0	0	-	Stat.	
WM	[10-13]		0				iat	Corr.	
Coding	[14-17]		•			0	-	Enc.	
Protocol	[18,19]		0			0	-	Cell	
n-1	[20-22]			0	0	0	-	Blend	
	•	•	•	•	•	•	•		

5 Metrics

5 Feat.

DigesTor

[1-9]

Comparing Passive Traffic Analysis Attacks on Tor

The Framework

Private Tor Network and TA Framework

Empirical Parameters & Virtual Network

Traffic Analysis Attacks

Shadow Simulation Model

Limitations

Pros

- Simulation Time
- Large-Scale Models
- Consensus
- ...

Cons

- No actual transmissions
- No network stack
- Traffic generation models
- ...

Virtual Network Setup

TA Framework

- Apply 5 comparison metrics
 - Correlation between traces or
 - Error between traces
- For 5 metadata features

Metric/Feature	cnt	iat	len	ttl	wis
Scalar	X	X	X	X	X
PCA, Pearson	X	X	X	X	X
Pearson Correlation	X	X	X	X	X
RMSE	Х	X	Х	Х	X
Mutual Information	X	X	X	X	X

Experiments

Generate data, apply metrics, compare results

Scenarios: Network Topologies

Directed setup:

- n = [2, ..., 30] clients connect to
- n = [2, ..., 30] servers

Isolated Connections

Grouped setup:

- n = [2, ..., 30] clients connect to
- 2 servers

Scenarios: Applications

Network Topologies: Directed, Grouped

Applications

Scenarios: Applications

Network Topologies: Directed, Grouped

Applications

Scenarios: Applications

Network Topologies: Directed, Grouped

Applications

Evaluation Questions

Best Metric in a Generic Scenario?

Evaluation Questions

Impact of Network Topologies?

Evaluation Questions

Impact of Application Types?

Analysis Metrics

Best Metric?

Metrics

- SC: Scalar
- PCA-P: Principal Component Analysis & Pearson Correlation
- P: Pearson Correlation
- RMSE: Root-Mean-Square Error
- MI: Mutual Information

Mutual Information

Metrics

- SC: Scalar
- PCA-P: Principal Component Analysis & Pearson Correlation
- P: Pearson Correlation
- RMSE: Root-Mean-Square Error
- MI: Mutual Information

Comparison of Setups

Comparison of Setups

Avg. Relative Success

Comparison of Applications

Comparison of Applications

Demonstration of DigesTor

Mixing as Countermeasure

Countermeasure: Mixing

Conclusion

What did we achieve?

Traffic Analysis Attacks

- Related work provides several different attacks
- Evaluation concepts differ
- Comparing results means comparing apples and oranges

Create Comparability

Traffic Analysis Attacks

- Related work provides several different attacks
- Evaluation concepts differ
- Comparing results means comparing apples and oranges

Create Comparability

Creating Comparability

DigesTor

- Generate traces in controlled environment
- Share data in Trace DB
- Apply TA framework

Assess Attacks

Traffic Analysis Attacks

- Related work provides several different attacks
- Evaluation concepts differ
- Comparing results means comparing apples and oranges

Create Comparability

Creating Comparability

DigesTor

- Generate traces in controlled environment
- Share data in Trace DB
- Apply TA framework

Assess Attacks

Demonstrating the Framework

Mixing

- Delay transmissions on purpose
- Obfuscate traffic patterns
- Hinder correlation

Evaluate Countermeasures

Traffic Analysis Attacks

- Related work provides several different attacks
- Evaluation concepts differ
- Comparing results means comparing apples and oranges

Create Comparability

Creating Comparability

DigesTor

- Generate traces in controlled environment
- Share data in Trace DB
- Apply TA framework

Assess Attacks

Demonstrating the Framework

Mixing

- Delay transmissions on purpose
- Obfuscate traffic patterns
- Hinder correlation

Evaluate Countermeasures

Thank You! Questions?

Appendix Everything you asked for

References: Passive Attacks

- 1. Timing Attacks in Low-Latency Mix Systems; Levine, Brian N and Reiter, Michael K and Wang, Chenxi and Wright, Matthew; International Conference on Financial Cryptography 2004
- 2. Timing Analysis in Low-Latency Mix Networks: Attacks and Defenses; Shmatikov, Vitaly and Wang, Ming-Hsiu; European Symposium on Research in Computer Security 2006
- Circuit Fingerprinting Attacks: Passive Deanonymization of Tor Hidden Services; Kwon, Albert and AlSabah, Mashael and Lazar, David and Dacier, Marc and Devadas, Srinivas; USENIX Security Symposium 2015
- 4. On Flow Correlation Attacks and Countermeasures in Mix Networks; Zhu, Ye and Fu, Xinwen and Graham, Bryan and Bettati, Riccardo and Zhao, Wei; Privacy Enhancing Technologies Symposium 2005
- 5. Sampled Traffic Analysis by Internet-Exchange-Level Adversaries; Murdoch, Steven J and Zielinski, Piotr; Workshop on Privacy Enhancing Technologies 2007
- 6. Statistical Disclosure Attacks; Danezis, George; Security and Privacy in the Age of Uncertainty 2003
- 7. Two-Sided Statistical Disclosure Attack; Danezis, George and Diaz, Claudia and Troncoso, Carmela; Workshop on Privacy Enhancing Technologies 2007
- Limits of Anonymity in Open Environments; Kesdogan, Dogan and Agrawal, Dakshi and Penz, Stefan; Workshop on Information Hiding 2002
- 9. Practical Traffic Analysis: Extending and Resisting Statistical Disclosure; Mathewson, Nick and Dingledine, Roger; Workshop on Privacy Enhancing Technologies 2004

Empirical Delays

Individual Results

Scenario	Metric	Feature	RG	AUC	AS
Directed	Р	ttl	35%	0.72	0.49
Grouped	MI	iat	22%	0.50	0.55
Random	RMSE	cnt	52%	0.48	0.80
Static	MI	iat	16%	0.65	0.46
Browsing	SC	iat	7.4%	0.70	0.34
Global	MI	iat	23%	0.61	0.52

Mixing: Performance Impairments

