Neuralyzer: Flexible Expiration Times
for the Revocation of Online Data

Apostolis Zarras
Technical University of Munich

zarras@sec.in.tum.de

Markus Dirmuth
Ruhr-University Bochum
markus.duermuth@rub.de

ABSTRACT

Once data is released to the Internet, there is little hope to suc-
cessfully delete it, as it may have been duplicated, reposted, and
archived in multiple places. This poses a significant threat to users’
privacy and their right to permanently erase their very own data.
One approach to control the implications on privacy is to assign a
lifetime value to the published data and ensure that the data is no
longer accessible after this point in time. However, such an ap-
proach suffers from the inability to successfully predict the right
time when the data should vanish. Consequently, the author of the
data can only estimate the correct time, which unfortunately can
cause the premature or belated deletion of data.

This paper tackles the problem of prefixed lifetimes in data dele-
tion from a different angle and argues that alternative approaches
are a desideratum for research. In our approach, we consider differ-
ent criteria when data should be deleted, such as keeping data avail-
able as long as there is sufficient interest for it or untimely delete it
in cases of excessive accesses. To assist the self-destruction of data,
we propose a protocol and develop a prototype, called Neuralyzer,
which leverages the caching mechanisms of the Domain Name Sys-
tem (DNS) to ensure the successful deletion of data. Our experi-
mental results demonstrate that our approach can completely delete
published data while at the same time achieving flexible expiration
times varying from few days to several months depending on the
users’ interest.

1. INTRODUCTION

Social media and cloud storage services have changed the in-
formation culture of our society. In the era of Web 2.0 people
willingly leave lasting digital traces of their lives while decisions
on uploading such information are short-termed. In contrast to
analog information, these traces remain available as long as the
providers of these services decide to. As a consequence, data such
as uploaded documents, communication contents, personal pro-
files, and posts can be accessed even years after their initial rele-
vance ceased [5, 15,21,31]. While the decision to upload personal

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CODASPY’16, March 09-11, 2016, New Orleans, LA, USA
© 2016 ACM. ISBN 978-1-4503-3935-3/16/03. .. $15.00
DOI: http://dx.doi.org/10.1145/2857705.2857714

Katharina Kohls
Ruhr-University Bochum

katharina.kohls@rub.de

Christina P6pper
Ruhr-University Bochum & NYU Abu Dhabi

christina.poepper@rub.de

information to the Internet can be made by each user individually,
the control of published data is passed to the service provider. Users
depend on a responsible privacy policy while the transparency of
the storage and provision process is lost in most cases. In addition,
the confidence in the corresponding services has been damaged by
a number of data scandals and insights into their archiving prac-
tices [16, 19, 22,23,32]. Unfortunately, these tendencies conflict
with the users’ right to be forgotten [8, 12].

As there is no solution on retroactively regaining control over
externally stored data, a possible remedy to this problem is a proac-
tive user-driven access control. For instance, the timed revocation
of data equips users with control over personal information by re-
voking the access to data at a specific time after its publication,
even if files are maintained by external service providers. Solu-
tions such as Ephemerizer [28], Vanish [14], and EphPub [7] allow
users to define a prefixed time when the data will be deleted. All
these solutions rely on the very same concept: they encrypt the data
and prevent access after the predetermined expiration date by de-
stroying the decryption key. In these solutions, the decryption key
is often spread within an existing infrastructure, for example, on
distributed hash tables. As long as the key bits can be accessed,
the published data remains available. The security goal of all timed
revocation schemes is retrospective privacy, i. e., the schemes guar-
antee the revocation of access rights after the expiration time.

However, all the previously-mentioned schemes suffer from the
same limitation: users should have prior knowledge of the correct
time when to delete their shared data. Unfortunately, this is not
always feasible and users’ privacy preferences are also likely to
change over time [1]. For instance, if a user uploads a picture from
a party, she may want this picture to be accessible only for a certain
period of time. In reality, knowing beforehand when the picture
should be deleted is a complicated task that can cause additional
overhead to individuals, while it remains most of the times without
the desired results; the picture may be destroyed before all of her
friends have seen it or it remains available for so long that it may
have negative impact.

We address this problem by introducing the concept of flexible
expiration times. In essence, this concept builds upon the security
features of retrospective privacy. Although at first glance it is based
on the same infrastructures as the above mentioned systems, at the
same time it does not require to predefine an expiration date and
therefore removes the respective load from users. Instead, deletion
will be based on a suitable revocation model, for example, expira-
tion after interest in the data drops or untimely revocation following
excessive access. No matter which revocation model a user selects,
the shared data will disappear after a period of time without the
user’s requirement of selecting this time.

Although the concept of flexible expiration times sounds sim-
ple enough, its actual design and implementation is not straight-
forward. The main reason is that we cannot directly modify the
architecture of the distributed infrastructures we use. In essence,
we require a widely accessible distributed infrastructure where we
can design a solution that allows us to react on external systems’
behavior without the necessity to modify or revise its architecture.
Thus, it is crucial that the ephemeral storage we select provides
mechanisms for extending the lifetime of the information we store
based on different events (e. g., the receivers’ accesses) or at least
allow us to perform a roundabout solution to this direction. This
constitutes a key difference to the previously mentioned proposals
in this space.

In this paper, we investigate this problem space and propose
Neuralyzer, a timed revocation scheme that allows dynamic access
control of users’ publicly available data. Neuralyzer extends exist-
ing approaches by applying flexible expiration times while provid-
ing retrospective privacy. More specifically, our prototype is based
on the caching mechanisms of the Domain Name System (DNS),
similar to the EphPub system [7]. To this end, it uses encryption
to protect the data and then splits and distributes the parts of the
decryption key over various DNS entries. The key is accessible to
anyone who knows which entries has been used for the encoding of
the key bits. At the same time, data access leads to the automatic
extension of the lifetime of the key bits in the cache of the DNS
servers. In essence, the key is valid as long as it is stored in the
cache and vanishes once the cache entries are empty. To assess our
results, we evaluate the performance of the designed framework re-
garding data lifetime for different access scenarios (i.e., drop of
interest, excessive access, and manual revocation). Based on the
results of a simulation study as well as a prototype implementation
we show that our approach provides dynamic access revocation to
published data. Overall, we believe that Neuralyzer can be an im-
portant building block to protect users from the long-term exposure
of their online data.

In summary, we make the following main contributions:

e We identify the limitations of current schemes for the timed
revocation of data and introduce the concept of flexible expi-
ration times for online data.

e We propose a protocol to revoke the public access to data that
should be forgotten based on three different access heuristics:
(7) drop of interest, (i7) excessive access, and (4¢7) manual
revocation.

e We assess the feasibility of our approach by implementing
and evaluating a working prototype. Our experimental re-
sults demonstrate that our prototype is able to successfully
destroy data with flexible expiration times.

2. DESIGN GOALS

In this section, we first state the problem we are addressing and
introduce the term of retrospective privacy. Furthermore, we de-
scribe three different access heuristics as motivation for the concept
of flexible expiration times. Finally, we present the threat model
used throughout this paper.

2.1 Problem Statement

The security goal of our approach is to prevent access to shared
data after its expiration time, summarized with the term of retro-
spective privacy. This is achieved under the application of different
access heuristics which time the revocation of an object.

Retrospective Privacy. With the publication of information in the
Internet, all physical control of data is passed to the respective ser-
vice provider. Timed revocation schemes encrypt valuable infor-
mation and revoke the access to a respective encryption key once
an object should become inaccessible. If access to an expired object
is successfully prevented, then retrospective privacy is fulfilled.

Access Heuristics. The data should be accessible only for a limited
period of time. Hence, the proposed protocol must revoke access
rights after that time. Predefined expiration times are the only re-
vocation technique that have so far found attention with respect to
the proposal of technical solutions [7, 14,28]. These approaches
are, however, independent of the access heuristic. We argue that
predefined expiration times have drawbacks in terms of appropri-
ateness and user friendliness (the users may not know the expiration
time nor may want to decide on it beforehand) and thus more dy-
namic revocations schemes are desirable. Dynamic revocation can
be achieved for instance based on the following types of heuristics
that take into account the number of accesses over time:

Drop of interest: With reducing audience also the relevance of
information can be assumed to disappear. Therefore, the system
should detect drops in interest and revoke the accessibility of infor-
mation to protect its future privacy. In essence, uploads of personal
information may be of short-term interest, as such posts are fre-
quently updated and often relate to recent events: A user uploads
a picture from an event recently attended, however, does not want
to be accessible forever, but only for a period where interest in the
event is still present. Through applying the above heuristic, the pic-
ture will remain alive by enduring requests, though once the interest
drops it will become inaccessible.

Excessive access: Users should be able to revoke the access to pub-
licly available data in case of excessive access. Therefore, a proto-
col should have the capacity to automatically revoke the access in
case of high demand. For instance, an advertising campaign pro-
vides free vouchers that should be limited in number. By applying
the excessive access heuristic a maximum number of accesses to
shared data can be constrained after which the data ceases to exist.
Manual revocation: Manual revocation of objects is an essential
fallback method if an applied heuristic does not cover proper dele-
tion. With the capability of manually revoking data any applied
fixed or dynamic lifetime of an object can be expired on demand.

We claim that the described, possibly incomplete, list of access
heuristics contains instances of desirable behavior. While technical
approaches for all heuristics and evaluations of their applicability
are desirable, in this paper we chose to focus on the first one (drop
of interest) and its technical realization. We later also extend our
investigations to the other access heuristics where applicable in the
description of our solution and evaluation. We note that providing
technical means to address all desirable access heuristics in parallel
may not always be possible.

2.2 Threat Model

The security goal of our approach is to provide retrospective pri-
vacy, where the adversary is prevented from accessing content after
its expiration. We assume that the attacker has no interest in ac-
cessing the published data prior to its expiration. In other words,
the attacker learns the importance of the previously-published data
only after that data has expired. This is due to the fact that data is
publicly available in the Internet throughout its lifetime and thus is
not assumed to be private. The privacy of data is protected only af-
ter its expiration. We also assume that the attacker can access meta
information prior to their destruction, i. e., she can retrieve informa-
tion about expired or soon to expire data from messages occurring

EDO—b&

/ Receiver

Key Retrieval
1

EDO Retroactive
/ Attack

_ Key 1
Distribution :
Sender 8

Attacker

Ephemeral Storage

Figure 1: System model.

in the used protocol. Yet, she is not proactively trying to collect
information to use it in the future for recovering expired data—if
many people utilize the proposed scheme, the sheer amount of in-
formation to be collected for later use would simply be excessive.
Within these restrictions, the attacker is able to add custom mes-
sages to system (e. g., by injecting new messages, altering existing
or replaying previous messages), however, she does not constantly
monitor the communication channel of the sender and the receiver.
Thus, she is capable of manipulating messages throughout the life-
time of an object, but does not do this in a targeted manner due to
a lack of knowledge which objects may be of interest in the future.
In addition to the discontinuous monitoring and altering of system-
related communication, the attacker may have access to the internal
memory of sender and receiver after the lifetime of an object.

3. HIGH-LEVEL IDEA

In our proposed model, we define three crucial parts that are in-
volved in the definition of our approach: (7) the ephemeral storage,
(4¢) the sender, and (i) the receiver (see Figure 1).

Ephemeral Storage. The lifeblood of our system is the mechanism
to store the decryption key. The key should remain accessible only
for a valid period of time and then disappear without leaving traces
that can be backtracked to its successful recovery. To this end, we
define ephemeral storage as a mechanism which assures that data is
accessible only for a valid period and then disappears permanently.
In essence, the ephemeral storage contains the critical information
for the successful decryption of data and therefore should always
be available and reachable during the data lifetime. This means that
it must not suffer from severe down-times and be accessible by the
majority of the online population. Therefore, we believe that only
a popular infrastructure can serve as ephemeral storage.

Sender. The sender must be aware that, as long the ephemeral key
exists, everyone with access to it can decrypt the data. The up-
loaded data to a server that the user does not own (e.g., Google
Drive, Dropbox, etc.), allows to any receiver as well as the server
itself to retrieve, decode, and store it permanently. Previous works
made it harder for the server to accurately use the collected data [10,
26], but these approaches are outside the scope of this paper. Fol-
lowing our threat model, we assume that the server does not proac-
tively collect this data.' With that in mind, the sender compiles the
data to a data structure called Ephemeral Data Object (EDO) which
contains the encrypted data and a link to the ephemeral storage that
includes information for the construction of the decryption key, and
then uploads it to a server from where it can be retrieved.

'If this assumption is not fulfilled, out-of-band channels can be set
up and used to distribute the information required for key recovery.

Table 1: Summary of notation.

Notation Explanation
S : Sender
R : Receiver
N : Length of DNS portrayal
I : Length of decryption key
|K|r : ki € K : Key of length T
|K'|1: ki € K’ : Recovered key of length T

‘C|I><N tcin €C : Cache entries for key
|D|rx~ :din €D : Domains of cache entries
|TTL|rx N : ttl;,n, € TTL :TTL values of cache entries
T : Key threshold

t1,to : TTL thresholds

Receiver. A receiver who retrieves an EDO is able to decode it and
decrypt its data before the key expires. To do so, the key must first
be recovered from the ephemeral storage and then be reconstructed
locally. Additionally, in our proposed model and following the drop
of interest access heuristic, the receiver contributes to the viability
of the EDO. Thus, it is crucial that the ephemeral storage provides
mechanisms for extending the lifetime of the stored key based on
the receivers’ access. This way, the data will be accessible as long
as there is sufficient interest for it and disappear afterward.

4. SCHEME DESCRIPTION

In this section, we provide the design details of our approach. We
propose the utilization of the DNS resolvers’ caching mechanisms
as an instantiation for the ephemeral storage. In the following text,
we first introduce the concept of ephemeral bits and then describe
the details of the protocol design.

4.1 Ephemeral Bits

As in any other encryption system, data is encrypted to pro-
tect it from unauthorized access. Given that the encryption algo-
rithm remains the same, the size of the key defines its resistance to
brute force attacks. For instance, breaking a symmetric 256-bit key,
which is used to encrypt data with the AES algorithm [9], by brute
force requires 2128 times more computational power than a 128-bit
key. In our approach, we use the same principle of defining the size
of a key by dividing it into its key bits. However, and given the fact
that we require the bits to be available only for a certain period of
time and then automatically being destroyed, we refer to these key
bits as ephemeral bits.

In our proposed scheme, we use the caching mechanisms of DNS
resolvers to encode the ephemeral bits and enhance them with the
property of self destruction. The utilization of DNS resolvers is
well-suited for our approach because of their automatic mechanism
to clear their caches within a predefined Time to Live (TTL) pe-
riod [24]. Consequently, after a scheduled timeout, the key will dis-
appear from DNS caches and the data can no longer be decrypted.

4.2 Protocol Description

Our approach allows data to be vanished once the interest for it
drops. This way, if a retroactive attacker attempts to access the data
after that point, she cannot recover it anymore. To do so, we in-
troduce the data structure EDO that protects the publicly accessible
data by encrypting it, encapsulating the encrypted content, and en-
suring its disappearance when the expiration time is reached. The
data contained in EDO becomes useless after a period of time, even
if an attacker retroactively obtains a valid copy of the EDO. Overall,
the lifetime of an EDO is divided into three phases: (i) construc-
tion, (74) access, and (7i7) revocation. For convenience Table 1
summarizes the notation we use throughout this section.

DNS Entry | < Domain, DNS Resolver >

Fi
DNS Portrayal
(1st ephemeral bit) :’{ 0 ‘ 0 | ! ‘ 0 l ! ‘ ! I ! |//
DNS Portrayal | ,{ | ’ I ’ ‘ ’ ‘
(2nd ephemeral bit) | \ ol ojojrjoje
Decryption‘1‘0‘1|o‘ ‘0‘1‘0|0‘

Key

Figure 2: An example of key distribution in DNS servers. We note
that initially, all entries in the DNS portrayal of a key bit 0 are in
fact 0 (some of them may get set over time, as shown in the figure).

4.2.1 Construction Phase

In this phase, a sender .S uploads to a third-party server data that
will cease to exist after the interest for it drops. For each new EDO,
our algorithm executes the following steps:

Step CI1. First, it generates a random key. The size of the key
defines the security of the encrypted data and therefore we recom-
mend at least a 128-bit key. Then, it utilizes this key to encrypt the
data using the AES algorithm.

Step C2. Next, it converts the key bits into ephemeral bits. Specifi-
cally, each ephemeral bit is encoded to a list of DNS entries, which
we call DNS portrayal. Each DNS entry is represented by a pair of
a domain name and a DNS resolver, illustrated in Figure 2. For this
purpose, we use a list of DNS resolvers and a list of precompiled
domains. The latter can be generated either by crawling the web
or by selecting random IP addresses and performing reverse DNS
lookups (details on how this can be achieved practically are pro-
vided in Section 4.3.1). Note that the selected domains must not be
preloaded in the cache of the associated DNS resolvers. With that
in mind, our algorithm can assign the value 1 in a DNS entry by
performing a recursive DNS request which will set the cache entry.

For all bits k; of the key, we proceed as follows: We do not take
any action if k; = O (apart of a non-recursive DNS query verifying
that the respective DNS entry is indeed not set). For every k; = 1,
we execute recursive DNS queries for the respective domain names
(defined in the EDO). As a result, values of the DNS portrayal for
each key bit 1 are set to active (loaded in the cache), while the
DNS portrayal for each key bit 0 remains unset (respective domain
names are not in the cache).

Note that we do not initially assign the value 1 to all entries in
the DNS portrayal if k; = 1, but only to a certain number of them.
Actually, we want to avoid that all DNS resolvers happen to clear
their caches at the same time, which would prevent key updates
during the access phase (detailed further below). The length of
the DNS portrayal (V) and the number of entries required for a
successful representation of an ephemeral bit (z) are defined by
thresholds. We discuss the threshold values in Sections 4.3 and 5.
Step C3. In this final step, our algorithm compiles the EDO. An
EDO contains the encrypted content and the list of domains D for
each key bit k;, represented by N cache entries ¢; . As we will
present in the access phase, this information is sufficient for suc-
cessfully decrypting the EDO during its lifetime.

4.2.2 Access Phase

Once the EDO has been compiled, it can be distributed to third-
party servers. A receiver R can retrieve the EDO and access its
content as follows:

Step Al. First, it retrieves the encrypted content and extracts the
list of domains D for each k; from the EDO.

Step A2. In order to assign the correct values to each ephemeral
key bit, our algorithm performs non-recursive queries to the DNS
resolvers for their corresponding domain names. If the resolver
contains the domain in its cache, our algorithm assigns the value 1
to this DNS entry otherwise the value 0. To minimize the errors that
may occur from externally modified entries, we use an empirically
calculated threshold z. If the sum of the returned values exceed this
threshold, the algorithm sets the corresponding ephemeral key bit:

N—1

Y oneo Cim =T 1

recover n=0 R (1)
Yoo Cin<z:0

where x is the threshold value that enables for recovering errors in
the cache entries. Such errors may be induced by random recursive
DNS requests leading to 0 — 1 switches (due to DNS queries from
users external to our scheme during the execution of the protocol),
or failures at the DNS cache resulting in 1 — 0 switches (the DNS
server has emptied its cache, for example, due to a reboot).

Step A3. In this step our algorithm extends the lifetime of EDO. To
do so, it updates a random DNS entry of each DNS portrayal that
represents an ephemeral key with the value 1 by executing a recur-
sive request. However, we want to have variation in the remaining
TTL values on the entries of each portrayal. This minimizes the
danger of having resolvers that simultaneously empty their caches
or at similar times. We achieve this by performing a recursive DNS
request when the median or minimum TTL per DNS-portrayal is
less than a preselected threshold. For instance, we can update the
DNS entries if we see that the median TTL is less than TTL 44 /2,
or if the DNS entry with the minimum remaining time to empty
its cache is less than TTL,,4,/10, where TTL,pq4 is the maxi-
mum value assigned to the TTL by the DNS servers. It is worth to
mention here that both conditions work in parallel and we update
a DNS entry whenever one of these conditions, or both of them,
is satisfied. In essence, without refreshing the cache entries, an
object would expire as soon as a significant amount of 1-bit repre-
sentations has switched from 1 to 0. Overall, to prolong the initial
lifetime limit, each receiver performs a cache refreshment after a
successful reconstruction of the EDO for all key bits k; = 1:

)

2
where the re fresh operation is only executed in case the median
TTL median(ttl;) or the TTL of a single value ¢tl; ,, for a key
bit k; fall below thresholds ¢1 or t2. In this case, a random ¢;
currently O is set to 1 by a recursive DNS request to the respective
domain d; .. Note that the threshold values as well as the metrics
(median/minimum TTL) can be adapted to a specific deployment
scenario and are not necessarily bound to the above definition.
Step A4. In the final step of this phase, the ephemeral key has
been successfully reconstructed. Then, the receiver uses this key to
decrypt and access the encrypted data.

(median(ttlyn) < t1)V (3In: ttlin <t2):1
refresh
(median(ttl;n) > t1) A (Vn : ttlin > t2) : 0

4.2.3 Revocation Phase

This is the last phase in the lifetime of an EDO. We expect that
after some time there will be a drop of interest for a published
EDO. Consequently, the number of accesses will decrease as well,
which will cause Step A3 of the access phase to be executed less
and less frequently. This results in cleared caches of the DNS en-
tries, such that, the ephemeral key cannot be reconstructed success-
fully. Therefore, the data will vanish, i.e., the encrypted data will
be present but will be useless without a retrievable decryption key.

4.2.4 Different Access Heuristics

In this section, we discussed how our model operates in the case

of “drop of interest”. We now describe how our scheme could
handle different access heuristics with only small modifications.
Excessive Access. In this case, we want to revoke the access of an
EDO in case the interest for it exceeds a certain upper bound of
allowed accesses. For this reason we need to count the number of
accesses to the EDO. As the DNS resolvers do not have an access
counter that would be visible or accessible to normal users, we can
enrich the EDO with a probabilistic self-destruction mechanism.
More precisely, for every single access of EDO, we generate a ran-
dom number. The decision to destroy the decryption key is based
on whether the generated random number is larger than a specific
bound defined by the highest number of acceptable accesses (e. g.,
for a allowed accesses, the bound would be 1 — 1/a if the ran-
dom numbers are selected from [0, 1]). If the result leads to not
allowing more accesses, the ephemeral key gets destroyed by per-
forming recursive DNS requests for all key bits. This causes all the
ephemeral bits to take the value 1. In essence, this approach is like
a dice with N sides and if we throw the proper side the ephemeral
key is destroyed. This requires the sender to include the maximum
number of accesses in the EDO and is based on the assumption that
receivers of the EDO before the expiration time are not malicious
(in accordance to our threat model).
Manual Revocation. Additionally, our approach supports the revo-
cation of an EDO at a time its creator decides to. This can be done
by performing recursive DNS requests to all DNS entries (similar
to what we previously discussed). After that, the data will not be
accessible any more, which is similar for a user to own the server in
which the data was initially uploaded to and then decides to remove
the data from the server. That said, we are aware that manual re-
vocation entails the danger of a receiver or an attacker prematurely
destroying the key. However, as we described in our threat model
we try to protect the data only against a retroactive attacker, thus a
proactive attacker is outside the scope of this paper.

4.3 Instantiation of the Scheme

Central to the application of the proposed scheme are the list of
domain names used in the construction of the EDO and the length
and threshold of the DNS portrayal. We detail both in the follow-
ing. We then also reason about the error correction capabilities and
scalability issues of the proposed scheme.

4.3.1 List of Precompiled Domains

The domain names which are used in our prototype are collected
automatically by utilizing reverse DNS lookup. This method is
based on the DNS infrastructure and allows the resolution of an
IP address to its designated domain name (also known as forward
DNS resolution). To generate a list of domains, we perform re-
verse DNS lookups to a range of IP addresses. In this procedure,
we exclude addresses that have been reserved for special purposes
by the Internet Engineering Task Force (IETF) and the Internet As-
signed Numbers Authority (IANA). Before employing the domains
we ensure using non-recursive DNS lookups that the domains are
not currently cached in the DNS resolvers.

An alternative way to generate such a list is by crawling the Inter-
net [30], using heuristics to reach less likely used websites. In both
cases, our list of domain names should contain rarely used websites
in order to reduce the chance of interference from legitimate DNS
lookups. However, the randomized reverse DNS lookup approach
above has the advantage that different users are more likely to se-
lect different domains so that their key storages do not interfere
with each other.

o)

=400+

o

3

@,2 Set up time

0200 Reverse lookup

£ ~ Pre—compiled list

I_ O- VA S S S ye e ye A A e A A b h—b—ah
(I) 1I é é ;1 EIS é % é é 1IO1I1 1I21I31I41I51I61I71I81I92I0

N

Figure 3: Time to construct an EDO for various lengths of the DNS
portrayal.

Figure 3 illustrates an example of EDO generation with and with-
out a precompiled list of domains for different numbers of DNS
servers used for each key bit (size N of the DNS portrayal). The
time consumption increases with a higher number of lookups. Mea-
surements of 1024 random lookups (as would, e. g., be needed for
N = 8) indicate an average duration of 0.31 seconds per success-
ful operation. In this setup, no collisions of domains were encoun-
tered. We note that the domain lists can be compiled by the sender
in advance to creating and publishing an EDO such that this does
not create a bottleneck in the execution of the system.

4.3.2 Size of DNS Portrayal

The length N and the threshold z of the DNS portrayal deter-
mine the number of errors that our scheme can handle and influ-
ence how long the lifetime of the data can be extended. We con-
sider as error any unexpected modification of the cache of a DNS
resolver. That is, (¢) a DNS resolver that empties its cache be-
fore the prescheduled TTL or (é¢) an “accidental” recursive DNS
request to our selected domain. To find representative error num-
bers, we monitored how the DNS entries behave in the real world.
Our measurements of error frequencies are based on a set of 1853
DNS resolvers that had shown reliable service over a period of sev-
eral months. We monitored the cached and uncached entries of
1000 randomly selected domains. For each resolver we collected
all errors that occurred during the entire lifetime of entries. Re-
sults show that () with an error probability of e1,o0 = 0.7% a
resolver empties its cache before the scheduled TTL expires and
(#4) eo—1 = 0.1% of accidental recursive requests were performed
on the observed set of domains during out measurements. Although
the exact error rates may vary over time, these numbers provide
reasonable estimates for our derivations and simulation.

Both types of errors, that is bit flips e1—,0 and eg— 1, should be
handled by our scheme. Based on this insight we can derive a min-
imal parameter setup N = 3 and « = 2 that enables correcting er-
rors of type () and (4¢) while providing the capability of refreshing
cache entries. During initialization, i. e., when the key bits are first
stored in the portrayal, the number of bits set to 1 must be larger
than z; in later investigations, we use [%1 1s for the initialization.

Beyond the minimal setup, an increase of the portrayal length N
allows for increasing the scheme’s correction capability whereas an
increasing x threshold leads to a higher overhead in the presenta-
tion of bits (see Equation 5 for reference).

The initial lifetime (before lifetime extensions due to new ac-
cesses to the object) are given by the TTLs. Typical TTL values we
observed for 1000 random lookups are characterized as follows:
median of 86,400s = 24 h, min. 72s, max. 604,800s = 14 days,
standard deviation 110,704 s ~ 30 h. Due to variations in the TTLs
as well as due to errors, we initially do not set only one but multiple
entries in each portrayal to 1.

4.3.3 Error Correction

Errors can cause the destruction of an encryption key before the
heuristic would have triggered the revocation of an object. The
application of a correction scheme should compensate such errors
as long as the heuristics consider an object accessible. We consider
the regular expiration of an entry as type-(iii) error for this purpose:
as long as the applied heuristics did not trigger the destruction of
the key, all changes in the key representation should not lead to the
expiration of an object.

As the expiration of an entry is a necessary event, the error prob-
abilities for e;—0 and ep—1 errors are highly distinct. Previous
revocation systems utilized different correction schemes with indi-
vidual characteristics: EphPub [7] uses Reed-Solomon (RS) error
correcting codes (ECC) and Vanish [14] uses Shamir’s Secret Shar-
ing (SSS). The following paragraphs compare the performance of
RS and SSS with the portrayal scheme applied in our scheme.
Error Correcting Codes. The RS code is an optimal BCH code (in
non-binary mode) designed for correcting burst errors and it there-
fore performs best for errors that occur in row in an encoded word.
In context of our scheme, the majority of type-(iii) errors occur ran-
domly in 50 % of the cache entries and—since DNS servers and do-
main names are picked and distributed using a random selection—
are uniformly distributed rather than bursty. An alternate to burst-
optimal RS codes are Golay codes. The extended binary Golay
code [24, 12, 8] can correct uniformly distributed errors and would
be more suitable for the occurrences of errors in our scheme. Dif-
ferent to standard ECC schemes, the parameters of our portrayal
can be adapted to the type of errors occurring, that is the asymmet-
ric distribution of 0- and 1-errors. Given this characteristic it is pos-
sible to achieve high correction rates while applying a smaller over-
head to the key representation. With respect to the applied over-
head and correction capabilities, the portrayal outperforms standard
ECC schemes; we provide a detailed derivation in Appendix A.
Thus, the portrayal is selected for providing robust lifetimes and
the possibility of refreshing the key representation of an object.
Shamir’s Secret Sharing. Secret sharing schemes distribute por-
tions of a secret message over several users where a threshold ¢
defines the number of shares required for reconstructing the orig-
inal secret. When applied to an encryption key, the key can only
be recovered when at least ¢ shares are available at access time.
Threshold values close to the number of shares lead to fast revoca-
tion and high security while smaller ¢ values lead to a more robust
system that can survive a higher number of errors. Overall, secret-
sharing can provide theoretical security for revocation schemes that
do not rely on the refreshing of entries: as soon as a bit error occurs
in one share it becomes invalid and cannot be used for reconstruct-
ing the key. As our scheme requires the refreshing of bits, it must
be robust to bit errors occurring through the expiration of cached
entries.

4.3.4 Scalability

Without any centralized component in our proposed scheme it
is not possible to store the domains that are already used for ex-
isting objects. Therefore it is not transparent whether an uncached
entry for a domain is currently unused or represents a O-entry or
erroneous 1-entry in another portrayal. The probability of overlap-
ping with an existing portrayal depends on the number of active
domains: for instance for 510 million domain names [18] and a
minimal portrayal with N = 3 and z = 2 overall 1,328,125 par-
allel users can share data via our model. The probability of over-
lapping entries at the initialization is approximately 1 % for 28,000
parallel users, as 50 % of bits in a portrayal are 0-bits that are prone
to overlap with entries that are already used.

Table 2: Parameter space of simulation study.

Parameter Variable space

I 1128

N [4,5,...,10]

© {1,2}

t 43,200
€10 . [0, 0007]
€0—1 : [0,0.001]

TTLpmin 1,200
TTLpmas 604,800

We note that high numbers of parallel users can increase the orig-
inal probability for eg—1 errors in addition to the error rate induced
by accidentally performed recursive requests. In order to increase
the robustness of our scheme for scenarios of massive parallel use,
an additional encoding can be applied. For instance, in the por-
trayal of the encryption key, each bit can be encoded by a mixed
tuple. A possible implementation could use a Manchester encod-
ing, where 0-bits are encoded by 01 while 1-bits are encoded by
10. This allows to detect all O key bits that are already in use under
the expense of doubled overhead.

S. SIMULATION STUDY

We conduct a simulation study to explore the parameter space,
with respect to three performance parameters for the access heuris-
tics of dropping interest and excessive access.

5.1 Simulation Setup

The parameters we investigate are shown in Table 2. They in-
clude the range of possible portrayal lengths N and the threshold
values x and ¢ for key recovery and TTL refreshing for a fixed key
length I = 128bit. We simulate the caching of entries and their
TTL values, possible errors induced to the key shares, and differ-
ent types of access patterns representing fluctuating numbers of re-
ceiver requests. The possibility of errors in the cache entries eg—1
and ej_,o each define the probability of a cache entry being flipped
and are derived from measurements on the set of resolvers. The as-
signment of TTL values follows the measurements of EphPub [7].

Within a simulation run the lifetime of an object is monitored
starting with its initialization until the destruction of the encryp-
tion key. It is executed step-wise with each step representing one
second of object lifetime. The number of requests to an object at
a time is simulated through different probability distribution func-
tions (PDF): we applied an exponential and shifted normal distribu-
tion for the scenarios of dropping interest and an inverse exponen-
tial PDF for the scenario of excessive accesses. At each simulation
step the cumulative number users performs an access on the object.

5.2 Performance Parameters

We consider the following performance parameters:

o Sensitivity of expiration: The sensitivity of expiration refers
to the point of time when the access to an object gets revoked.
While systems with high sensitivity react to the underlying
metrics at an early point in time, more robust parameter se-
tups extend the lifetime of an object.

o Reliability of results: For identical parameter setups, the life-
time of an object may vary in multiple simulation runs, as
the system dynamics lead to a probabilistic model. Never-
theless, the reliable revocation of an object should still be
ensured. We analyze the continuity of object lifetimes for
highly sensitive as well as robust parameter setups.

300

o iiil
0- -—;;i
2 4 6 8

N

hl

ime

Object Lifet
S
<

Figure 4: Error correction capabilities for x = 2 and increasing V.
The error bars summarize the standard deviation of object lifetimes
for 50 repetitions.

=80 Expiration
5 ® Prirev] = 0.2%
3 A Prlrev] = 0.08%
%607 HPrlrev] = 0.03%
@
340~
<

20+

0 1000 2000 3000
Simulation Time

Figure 5: Lifetimes for x = 2, N = 10 and access heuristic for
excessive access at an inverse exponential distribution of accesses.

e Error correction capabilities: Based on the optimal thresh-
old z = 2, the correction capabilities can be increased by
adapting the portrayal size N. Therefore a variation of the
portrayal length leads to different object lifetimes.

5.3 Sensitivity of Expiration

Figure 4 summarizes the object lifetime for an increasing por-
trayal length N at the optimal threshold = 2. With an increasing
ratio % the correction capabilities increase and lead to a prolonged
object lifetime. This characteristic can be applied for defining the
sensitivity of metrics in our scheme: to provide a robust revocation
mechanism we need a ratio of at least 2.5 while smaller ratios lead
to a system sensitive to a lack of refresh operations.

We measured the expiration time of an object with respect to
exponentially (Figure 6a) and normally (Figure 6b) distributed ac-
cess patterns. To provide an object with low sensitivity to drop-
ping access rates, we simulated the object lifetime with N = 10,
z = 2 and therefore a high ratio % = 5. For a scenario with
access rates similar to a normal distribution the object expires as
soon as the number of users is close to zero. In a parameter setup
with increased sensitivity and N = 4, x = 2, % = 2 the ex-
piration is triggered earlier, as a reduced number of expirations in
cache entries can be covered. For a scenario with exponentially
distributed access rates a highly sensitive parameter setup would
require a more restrictive parameter setup.

Other than the Drop of interest heuristic, in case of Excessive
access the key information should be destroyed if the number of
accesses increases dramatically. Based on a probabilistic approach
the expiration of an object can be reduced or prolonged by adapt-
ing the probability of destruction. As shown in Figure 5 higher
probabilities lead to an early destruction of key information while
reduced probabilities prolong the object lifetime. Nevertheless the
revocation of an object cannot be determined as reliable as with the
Drop of interest heuristic, as the moment of expiration is random.

5.4 Reliability of Results

Given the above parameter setups for a sensitive or robust revo-
cation we analyzed the reliability of results for multiple repetitions.
As shown in Figure 6, the dynamic characteristics of the simula-
tion model lead to variations in the object lifetime: for 50 repeti-
tions with TTL values distributed according to the measurements
of common lifetimes, the results show slight deviations in the ex-
piration time. Nevertheless the overall range is limited leading to
a reliable destruction of key information for a given parameter set.
Based on these characteristics it is possible to initialize an object
with a target sensibility of the Drop of interest heuristic.

5.5 Error Correction Capabilities

Given the probability of naturally occurring errors in the cache
representation of key bits, the = threshold is capable of correcting
a limited amount of errors. We tested different x-thresholds based
on a cache dimension of N = 20, which represents an acceptable
creation duration. We applied the best performing setup to a sim-
ulation scenario with increasing error rates and accumulated the
results for 100 random repetitions. As summarized in Figure 7, an
average error probability of 10™* already leads to a major decrease
in the object lifetime when no correction threshold is applied (Fig-
ure 7a). However, x = 2 provides a constant lifetime up to an error
rate of 10™2 and still allows for a performing system at 102 (see
highlighted area), which is beyond the realistic error rates measured
in the prototype implementation.

Overall, the simulation results lead to the conclusion that an
application of the Drop of interest heuristic is possible with our
scheme. Furthermore, a variation of system parameters such as
the x-threshold enable for adjusting the sensitivity of the applied
heuristic leading to a shift in the expiration time.

6. PROTOTYPE EVALUATION

To demonstrate the viability of our approach, we have imple-
mented our proposed scheme as an autonomous framework called
Neuralyzer. Our prototype is capable of dynamically encrypting
data with a randomly generated key and then distribute the key
bits across multiple real world DNS resolvers. To this end, we uti-
lized the Python programming language and more specifically the
PyDNS module, which allowed us to send both recursive and non-
recursive DNS queries to our chosen DNS resolvers. Additionally,
we used the AES algorithm (with a standard key size of 128 bits) of
PyCrypto module to encrypt the data. Finally, each compiled EDO
is encoded in a base64 format which is ideal for “shipping” the data
across the Internet.

6.1 Expiration Time

We first consider the expiration of the publicly available data
once the interest for it ceases to exist. In other words, the decryp-
tion keys of EDO should be available only as long as there is suffi-
cient interest and disappear afterward.

To examine whether our protocol design is accurate we created
two sets of EDO documents. Each set contained 100 documents
compiled with our prototype. On the first set we did not apply any
accesses at all, whereas on the second set we applied sufficient ac-
cesses (2 to 10 accesses per hour, random selection of their number
and point in time) for a day, which is a typical lifespan for a nor-
mal tweet [33]. To assess the viability of the generated key bits
in the DNS resolvers we performed non-recursive DNS queries to
the corresponding servers. This way we did not affect the caches
of the resolvers while we were able to monitor the TTL values on
their caches, which means that we could monitor the existence of
the decryption key without interfering with our experiment.

50

E40 Expiration
3 ® Low sensitivity
30 A High sensitivity
$20
Q
210

0+, : ; .

0 1000 2000 3000

Simulation time

(a) Exponential Distribution.

= Expiration
257 @ Low sensitivity
& A High sensitivity

0 1000 2000 3000
Simulation time

(b) Shifted Normal Distribution.

Figure 6: Expiration time for 50 repetitions of sensitive and robust parameter setup. The highlighted boxes represent the positive and negative

standard deviation of measured lifetimes.

1000~
() —_—
£ 750- i
2 :]
= 500+
O .)
(6]
& 250- |
@) H
0- ! : T 2 .
0 10° 10" 10 10?® 107
Error Rate

(a) Accumulated lifetime of EDO for = 0 (no error correction).

1000+
[0}
£ 7501 !
2 : i
—= 5007 | ! ! =i=
(&)
(0]
5 250+ :
o)
0- : . . . B =
0 107° 107* 1073 1072 107"

Error Rate

(b) Accumulated lifetime of EDO for x = 2 (minimal correction
threshold).

Figure 7: EDO lifetime measured for different error rates at N = 20.

The outcomes revealed that in both scenarios the keys were de-
stroyed during the expected time (same behavior for all documents).
More precisely, the keys were vanished once the cache of the cor-
responding DNS resolvers emptied. Keep in mind that the TTL
of the DNS resolvers cache define for how long the data will be
available after their last access. In the first scenario, we noticed
that after the first hour we could not decrypt the EDO documents
any more. This happened due to the fact that the majority of the
resolvers provided us with a TTL of 3600 seconds. In the second
scenario, the keys remained available for the time that there existed
sufficient interest for the documents. The major take away message
from this experiment is the permanent deletion of the key once the
interest drops. One anecdotal experience of this experiment is that
we noticed during the day few resolvers to prematurely empty their
caches or recursive DNS requests. However, none of these inci-
dents were sufficient to destroy the decryption key.

6.2 Long Lasting Data

In contrast to certain types of data such as status updates on so-
cial media, comments on news websites, or publicly available pic-
tures in cloud services in which the expected interest will be very
limited and ranging from some hours to few days, there exist others
such as posts on popular blogs or project documents that their cre-
ators expect to last longer, e. g., weeks or even months. The design
of our model is meant to maintain the data as long as there is suffi-
cient interest for it. We thus wanted to see if our approach operates
in the real world as it is designed to, or an increased number of
random recursive queries and errors in the caches of DNS resolvers
over time will prematurely destroy the access to the compiled data.

To examine how Neuralyzer behaves in such long lasting data
we created EDO documents, which we then accessed for a period
of 33 days. In essence, we wanted to measure how a drop of in-
terest scenario will behave in long lasting objects (in our case for a

500
450
400 A Expiration time
350
300
250
200
150
100

50

0 5 10 15 20 25 30
Time (days)

Number of accesses

Figure 8: Number of accesses for a period of one month.

period of one month). Thus, the number of accesses dropped from
over 400 accesses per day, which was at the beginning, to only a
few accesses per day at the end. The outcomes of our experiments
demonstrated that the number of random recursive queries and er-
rors in the caches of DNS resolvers were not sufficient to revoke the
access to the compiled EDO. More precisely, we were able to suc-
cessfully reconstruct the decryption keys for a period of 30 days, as
long as there was sufficient interest for the published data, and after
that point in time the data were not accessible any more as Figure 8
illustrates. After the 33rd day there was no more accesses and this
is the reason for the linear drop of accesses after this point in time.
Consequently, this experiment along with the previous one demon-
strates that Neuralyzer can achieve expiration times varying from
hours to several weeks or months, depending on users’ interest.

6.3 Accuracy of Excessive Accesses

Most of the times users do not really care about the publicity
of their exposed information, e. g., status updates or tweets. How-
ever, there exist cases that the number of accesses play an important
role, e. g., a blog post which the author does not desire to get viral.

1200
1000
800
600
400
200

Number of EDOs

0 ¢ 5000 10000 15000 20000
Number of accesses

Figure 9: Standard deviation for the self destruction of EDOs.

The DNS infrastructure does not allow us to utilize or introduce a
counter for the number of accesses to our publicly available EDOs.
Therefore, we devised a probabilistic solution that could allow us to
address this problem (Section 4.2.4). We next wanted to examine
the accuracy of our approach. For this reason we created 10,000
EDOs and then we selected 10,000 to be a desired number of ac-
cesses. We then calculated the average number of accesses along
with its standard deviation. Figure 9 depicts the number of accesses
before an EDO is finally destroyed. More precisely, we found that
each EDO was destroyed on average after 9928 accesses. The stan-
dard deviation value of our solution in terms of 3598 accesses (36%
off from our assigned value) indicates that this approach can be se-
lected as long as the number of accesses is acceptable as a rough
estimate for the self-destruction of an object.

6.4 Manual Revocation Evaluation

Although our basic model is to revoke the access of publicly
available data once the interest for it drops, there may exist cases
where there is a pressing need for the immediate revocation of data.
Although the concept behind of manual revocation is really simple,
we nevertheless evaluated its effectiveness. To do so, we created
200 EDO documents and we divided them into two sets of 100 doc-
uments per set. In the first set we performed a manual revocation
immediately after the creation of the encrypted documents while in
the next set we performed the same action after they already had
been accessed. This way we took into consideration (z) the case
that an author of an EDO document wants to recall the access to
the document right after it is been uploaded to a remote server, and
(4¢) the case that the document already have been accessed but the
author does not desire any more publicity. As expected, in both
cases we were able to completely destroy the decryption key in all
200 documents.

7. SECURITY ANALYSIS

We now analyze the presented scheme with respect to the secu-
rity goal of retrospective privacy. Furthermore, additional attacks
on the proposed system are discussed.

7.1 Retrospective Privacy

Retrospective privacy is fulfilled if an attacker is unable to access
the contents of an EDO after its expiration. Under the assumption
of a secure encryption system, this is possible in case the attacker
manages to recover the decryption key of an object. Furthermore,
we must take security issues of the DNS infrastructure into account.

7.1.1 Key recovery

Following the assumptions of Section 2.2, the attacker gains ac-
cess to an encrypted EDO as well as the respective list of all des-
tinations to where the key share was distributed after the object

expired. Based on the DNS implementation, this results in a set of
cache entries that previously represented the encryption key.

In an attack the expired and therefore still encrypted objects along
with the list of key share domains are accessible to the adversary.
At this point the information embedded in the acquired EDO can
only be accessed if the attacker manages to recover the required
amount of key bits from the list of queried domains for reconstruct-
ing the encryption key. The chance of successfully guessing the
encryption key after expiration decreases over time.

Targeted guessing. Short after the expiration, a high number of
cached 1-entries is still valid allowing the separation of 0- and 1-
key bits based on an assumed threshold value: In the standard por-
trayal a threshold of © = 2 is optimal for the given error character-
istics. Even though the correction capabilities for e;_,¢ errors can
be increased by using larger portrayal lengths [V, the x threshold
must be at least 2 for providing the correction of eg—,1 errors. An
attacker therefore can assume x = 2. The number of valid 1 en-
tries decreases over time, which increases the indistinguishability
of key bits. Even though the threshold cannot be fulfilled correctly
after some time, the existence of a 1-entry is more likely to be the
remaining cache entry of a 1-bit of the key rather than a eq_,; flip
error. Therefore targeted guessing may lead to success if a suffi-
cient number of 1-caches still exist. Both, the possible assumption
of the optimal x threshold as well as targeted guessing of entries
highly increases the chance of an attacker to successfully recov-
ering the encryption key. Nevertheless, the overall success highly
depends on the amount of time that passed between the revocation
of an object and the actual attack on the key information.

Time. Over time the number of remaining 1-entries in the cache
decreases, which also reduces the probability for an attacker to suc-
cessfully recover the encryption key from remaining entries. The
period of time in which a successful attack is likely can be analyzed
based on the frequency of common TTL values.

As soon as the expiration of one entry 7T L(ceqp) leads to the
destruction of the key bit, a set of remaining 1-entries Crem €
Crem must have had the same or higher TTL values at the ini-
tialization of cezp:

Acrem € Crem : TTL(crem) > TTL(Cexp) 3)

That is, when cezp, Was initially set and later triggered the destruc-
tion of the encryption key, all remaining entries that are also cached
cannot have a TTL that is lower than that of c.;p. Due to this re-
striction two cases can be distinguished: In case (a) the majority of
remaining entries has a TTL identical to c.., and therefore expires
at the same time. In this case the amount of information left for the
attacker is insufficient for efficiently guessing the encryption key.
In the second case (b) a majority of elements in Cren has a TTL
greater than the expired one. Based on the measurements on com-
mon TTL values, a lifetime of 86,400 seconds (1 day) can be as-
sumed for 58% of cache entries, the next greater TTL is 86, 400 2
and therefore provides another day to guess the remaining entries
of the key. After that, the data is irrecoverably gone.

7.1.2 Security issues of the DNS infrastructure

Even though Neuralyzer utilizes the distributed and decentral-
ized infrastructure provided by public DNS resolvers, several char-
acteristics of this infrastructure can lead to security issues. Kiihrer
et al. [20] found that in 2015 a significant amount (that is 20% of
overall 6,753,748 resolvers in that specific measurement) of public
resolvers run with BIND version 9.8.2, which can be manipulated
through a remote code execution vulnerability. They also showed
that a majority of public DNS resolvers are hosted by the top 25
networks wherein at least 20 offer telecommunication and broad-

band Internet services. Even though these results do not necessarily
imply malicious behavior of service providers or the monitoring of
traffic through a BIND vulnerability, the above can still lead to se-
curity issues for Neuralyzer. To overcome the threat of remote code
execution, a fingerprinting of resolvers and the according software
should be performed. When detecting a software version that can
enable an attacker to perform monitoring of traffic on the public
resolver, it should be excluded from the list of nodes that are con-
sidered in the portrayal of key bits.

In a scenario where the attacker is able to make use of the above
issues, it must be assumed that the traffic of a fraction of resolvers
of a portrayal can be monitored. This monitoring enables the at-
tacker to save a history of cached/uncached entries during the life-
time of an object. In a retroactive attack this knowledge can help
to reconstruct the encryption key from the remaining cache entries.
As summarized in Section 7.1.1, even limited knowledge about the
content of a portrayal can increase the probability of successfully
guessing the related key bit dramatically. A simulation study on
the amount of monitors required for learning about the encryp-
tion key shows that also smaller amounts of malicious resolvers
are sufficient for reconstructing a significant portion of the key (see
Appendix B for details). When extending the current filtering of
resolvers to a selection of maximum distributed hosts of public re-
solvers, the threat of centrally controlled nodes can be reduced.

7.2 Further Attacks

Brute Force attack. A Brute Force attack on all possible DNS
cache resolvers requires guessing of all potential destinations for
bits of the key share. As summarized in EphPub [7] the number of
possible entries exceeded 126 million in 2011 making a successful
Brute Force key recovery unlikely for a DNS-based implementa-
tion. Moreover, the recovery of single key bits still requires the
reconstruction of the full encryption key and a matching of this key
to the explicit object it was applied to.

Sybil and infiltration attack. The Sybil attack, such as used by
Zeng et al. [35] for showing vulnerabilities in the Vanish [14] sys-
tem, is realized by controlling multiple virtual identities within the
target infrastructure. Based on that the attacker is enabled to re-
ceive a large portion of the traffic occurring in a network allowing
her to analyze the traversing packets. In context of a DNS-based
implementation a Sybil cannot be realized through virtual nodes as
there is no such thing as virtual identities for DNS resolvers. The
required overhead for controlling the required amount of physical
nodes in the DNS system makes a successful Sybil or infiltration
attack therefore unlikely.

8. RELATED WORK

The automated deletion of data is not a new idea and researchers
worked on this concept for quite a while. The first set of works
involves trusted parties. Perlman proposed Ephemerizer, a trusted
service that ensures timely expiration of emails [27,28]. Nair et
al. [25] extend the original idea of the Ephemerizer system through
an identity-based cryptosystem. Systems such as X-Pire! [2] or the
revocable backup system [6] also rely on a trusted key management
server. Popper et al. [29] presented an approach utilizing porter de-
vices for a secure storage of long term keys including explicit key
deletion and forward-secret protocols, even under device compro-
mise. Reimann et al. [30] proposed a revocation system that allows
for long-term expiration dates of several months after publication.
However, providing flexible expiration times of data using a decen-
tralized infrastructure has not been proposed or investigated.

Vanish [14] was the first system not relying on a centralized,
trusted system for the later revocation of data. Instead, it utilizes
a decentralized architecture based on P2P distributed hash tables
(DHT). Unfortunately, Vanish is susceptible to Sybil attacks [34]
that can compromise the system by continuously crawling the DHT
and saving each stored value before it expires. To overcome the
vulnerabilities of Vanish, Zeng et al. [35] presented SafeVanish,
which extends the length range of Vanish’s key shares to substan-
tially increase the attack cost, while it does also some improvement
on the Shamir’s Secret Sharing implemented in Vanish. In a survey
about the vulnerabilities of self-destructing data systems, Geam-
basu et al. [13] implemented a framework for testing key-storage
mechanisms based on different infrastructures and presented coun-
termeasures to data-harvesting attacks. Casteluccia et al. [7] pre-
sented EphPub, a system that utilizes the DNS infrastructure and is
capable of providing longer lifetimes for objects. Our major differ-
ences to EphPub is that we (i) designed a way for refreshing cache
entries to prolong the lifetime of an object and (4¢) applied access
heuristics that manage the revocation of objects depending on the
access behavior.

Another group of approaches is the cipher-text-policy attribute-
based encryption (CP-ABE) schemes first introduced by Bethen-
court [4]. With CP-ABE, access control policies can be enforced
with attribute-based encryption where defined sets of credentials
are required for encrypting sensitive data. These credentials are
related to group or location attributes, e. g., specific enterprise de-
partments, and included in a policy definition. Different to previous
attribute-based encryption systems such as [11], attributes are used
for a description of user credentials while access policies are de-
fined by the encrypting party instead of storing this information in
user keys. Hur et al. [17] presented a system providing the enforce-
ment of access control policies even with revocation of attributes
and thus access privileges. Balani and Ruj [3] took this concept to
the cloud, outsourcing the decryption to a proxy server unable to
retrieve information from the computations. Even though these ap-
proaches provide encryption-based handling of access policies they
still cannot provide the dynamic revocation of files. That is the un-
derlying crypto-infrastructure may be ported to a system such as the
Neuralyzer while handling the key information must be performed
in a decentralized manner.

9. CONCLUSION

In this paper, we proposed a novel approach for flexible revoca-
tion of online data. Other than recent work in this field, the central
goal is to provide a metric-driven revocation mechanism that can be
adapted to, e. g., the progression of user accesses over time instead
of a predefined lifetime. To this end, the publicly accessible data is
protected by encrypting it, encapsulating the encrypted content, and
ensuring the destruction of the encryption key when the expiration
time is reached. To assess our approach we created Neuralyzer, a
proof-of-concept system based on the caching mechanism of pub-
lic DNS resolvers that is able to refresh key information over time
and expire its lifetime based on access novel heuristics. Results of a
simulation study and experiments with a prototype implementation
reveal that we can achieve flexible and reliable expiration times for
the revocation of online data based on users’ interest.

Acknowledgments

The research presented in this paper was supported by grant An-
2014-0024 from MERCUR (Mercator Research Center Ruhr) and
by the DFG Research Training Group GRK 1817/1.

10.
(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

[9] J. Daemen and V. Rijmen. The Design of Rijndael: AES — the

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

0. Ayalon and E. Toch. Retrospective Privacy: Managing
Longitudinal Privacy in Online Social Networks. In
Symposium on Usable Privacy and Security (SOUPS), 2013.
J. Backes, M. Backes, M. Diirmuth, S. Gerling, and

S. Lorenz. X-Pire!-A Digital Expiration Date for Images in
Social Networks. arXiv preprint arXiv:1112.2649, 2011.

N. Balani and S. Ruj. Temporal Access Control With User
Revocation for Cloud Data. In International Conference on
Trust, Security and Privacy in Computing and
Communications (TrustCom), 2014.

J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-Policy
Attribute-Based Encryption. In IEEE Symposium on Security
and Privacy, 2007.

M. Bishop, E. R. Butler, K. Butler, C. Gates, and

S. Greenspan. Forgive and Forget: Return to Obscurity. In
New Security Paradigms Workshop, 2013.

D. Boneh and R. Lipton. A Revocable Backup System. In
USENIX Security Symposium, 1996.

C. Castelluccia, E. De Cristofaro, A. Francillon, and M.-A.
Kaafar. EphPub: Toward Robust Ephemeral Publishing. In
IEEE International Conference on Network Protocols
(ICNP), 2011.

C. Conley. The Right to Delete. In AAAI Spring Symposium:
Intelligent Information Privacy Management, 2010.

Advanced Encryption Standard. Springer Science &
Business Media, 2002.

E. De Cristofaro, C. Soriente, G. Tsudik, and A. Williams.
Hummingbird: Privacy at the Time of Twitter. In IEEE
Symposium on Security and Privacy, 2012.

T. Eissa and G.-H. Cho. A Fine Grained Access Control and
Flexible Revocation Scheme for Data Security on Public
Cloud Storage Services. In International Conference on
Cloud Computing Technologies, Applications and
Management (ICCCTAM), 2012.

European Commission. Factsheet on the “Right to Be
Forgotten” Ruling, C-131/12.
http://ec.europa.eu/justice/data- protection/files/factsheets/
factsheet_data_protection_en.pdf, 2014.

R. Geambasu, T. Kohno, A. Krishnamurthy, A. Levy,

H. Levy, P. Gardner, and V. Moscaritolo. New Directions for
Self-Destructing Data Systems. Technical report, University
of Washington, 2011.

R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy.
Vanish: Increasing Data Privacy with Self-Destructing Data.
In USENIX Security Symposium, 2009.

R. Gross and A. Acquisti. Information Revelation and
Privacy in Online Social Networks. In ACM Workshop on
Privacy in the Electronic Society (WPES), 2005.

Huffington Post. Experts Say Facebook Leak of 6 Million
Users’” Data Might Be Bigger Than We Thought.
http://www.huffingtonpost.com/2013/06/27/
facebook-leak-data_n_3510100.html, Jun 2013.

J. Hur and D. K. Noh. Attribute-Based Access Control With
Efficient Revocation in Data Outsourcing Systems. IEEE
Transactions on Parallel and Distributed Systems,
22(7):1214-1221, 2011.

Internet Live Stats. Total Mumber of Websites.
http://www.internetlivestats.com/total-number-of- websites/,
Aug 2015.

[19] B. Krebs. Online Cheating Site AshleyMadison Hacked.
http://krebsonsecurity.com/2015/07/
online-cheating-site-ashleymadison-hacked/, Jul 2015.

[20] M. Kiihrer, T. Hupperich, J. Bushart, C. Rossow, and
T. Holz. Going Wild: Large-Scale Classification of Public
DNS Resolvers. In ACM SIGCOMM Internet Measurement
Conference (IMC), 2015.

[21] M. Madejski, M. L. Johnson, and S. M. Bellovin. The Failure
of Online Social Network Privacy Settings. Technical report,
Columbia University, 2011.

[22] C. D. Marsan. 15 Worst Internet Privacy Scandals of All
Time.
http://www.networkworld.com/article/2185187/security/
15-worst-internet- privacy-scandals-of-all-time.html, Jan
2012.

[23] Mashable. 98,000 Hacked Snapchat Photos and Videos
Posted Online. http://mashable.com/2014/10/13/
the-snappening-photos-videos-posted, Oct 2014.

[24] P. V. Mockapetris. RFC 883, Domain Names —
Implementation and Specification. 1983.

[25] S. K. Nair, M. T. Dashti, B. Crispo, and A. S. Tanenbaum. A
Hybrid PKI-IBC Based Ephemerizer System. In New
Approaches for Security, Privacy and Trust in Complex
Environments, 2007.

[26] P. Papadopoulos, A. Papadogiannakis, M. Polychronakis,

A. Zarras, T. Holz, and E. P. Markatos. K-Subscription:
Privacy-Preserving Microblogging Browsing Through
Obfuscation. In Annual Computer Security Applications
Conference (ACSAC), 2013.

[27] R. Perlman. File System Design With Assured Delete. In
IEEE International Security in Storage Workshop (SISW),
2005.

[28] R. Perlman. The Ephemerizer: Making Data Disappear.
Journal of Information System Security (JISSec), 1:51-68,
2005.

[29] C. Pépper, D. Basin, S. Capkun, and C. Cremers. Keeping
Data Secret Under Full Compromise Using Porter Devices.
In Annual Computer Security Applications Conference
(ACSAC), 2010.

[30] S. Reimann and M. Diirmuth. Timed Revocation of User
Data: Long Expiration Times From Existing Infrastructure.
In ACM Workshop on Privacy in the Electronic Society
(WPES), 2012.

[31] D. Rosenblum. What Anyone Can Know: The Privacy Risks
of Social Networking Sites. IEEE Security & Privacy,
(3):40-49, 2007.

[32] The Register. iCloud Fiasco: 100 Famous Women Exposed
Nude Online. http://www.theregister.co.uk/2014/08/31/jlaw_
upton_caught_in_celeb_nude_pics_hack, Aug 2014.

[33] Wisemetrics. Your Tweet Half-Life Is 1 Billion Times
Shorter Than Carbon 14’s. http://blog.wisemetrics.com/
tweet-isbillion-time-shorter-than-carbon14/, Mar 2014.

[34] S. Wolchok, O. S. Hofmann, N. Heninger, E. W. Felten, J. A.
Halderman, C. J. Rossbach, B. Waters, and E. Witchel.
Defeating Vanish With Low-Cost Sybil Attacks Against
Large DHTs. In ISOC Network and Distributed System
Security Symposium (NDSS), 2010.

[35] L.Zeng, Z. Shi, S. Xu, and D. Feng. SafeVanish: An
Improved Data Self-Destruction for Protecting Data Privacy.
In International Conference on Cloud Computing
Technology and Science (CloudCom), 2010.

APPENDIX

A. COMPARISON OF CORRECTION
CAPABILITIES

In the following our portrayal (P) is compared to the Reed-Solomon

(RS) and Golay (G) error correcting code with respect to each
scheme’s individual overhead. To do so, a fixed number of errors
T = 1000 and key length z = 128 are defined that should be
corrected by a scheme with minimum possible overhead.? For a bi-
nary input of length z the above schemes can correct the following
number of errors in general:

Rs{n2k b

—1
2 ’ [krzm

:n — k even

l:n—kodd ° @

where n = 2™ — 1 with 7 < n < 2'% — 1 is the codeword length,
3 < m < 16 is the input word length, and £ < n is the number of
words to be encoded in one code word.

P:z(N—z-1), (%)

where N is the length of a portrayal, and x is the correction thresh-
old. To be robust against flipping of bits in both directions, the total
correction capability for ep—1 must be at least 1. This requirement
is fulfilled forx > 1 and N > 3.

The parameters for G are fixed and allow up to 3 corrections for
the extended binary G[24, 12, 8].

A RS code is optimal only for non-binary input and can be adapted
to encoding the binary encryption key by setting m = 8 for repre-
senting 1 byte per word. Under this assumption the overhead and
correction capability of RS (assumed n — k even) is as follows for
T = 1000:

n—k z
< .

T o< B ©

255 —k 128
1 < =12 7
s 1000 < S2EL))
& 2000 < 255*](7"—%—”]6:1 ®)
= 2000 < 2032 9)

To correct at least 7' = 1000 errors, RS must be applied with
m = 8, n = 255, k = 1 leading to a total overhead of factor 16.

For any T" and an input length z = 128 the overhead of RS is as
follows:

128

2T < (0" —1— k) [

] 10)

%In context of a scheme’s correction capabilities the overhead de-
fines the amount of additional bits required for a code that is capa-
ble of correcting the fixed error rate.

For a minimum threshold of = 2, P provides the following
overhead for T' = 1000:

T < 2(N-—z-1) (11)
= 1000 < 128(N —2-1) (12)
& 1000 < 128N|N =38 (13)
= 1000 < 1024 (14)

This leads to a parameter set of N > 8,z = 2 and a total over-
head of factor 9 for the portrayal scheme. The correction capability
for any error rate 7" for an input of length z = 128 is as follows:

T
128 <N (15)
For providing the same minimum correction rate with G, the in-
put length must be extended: to correct at least 7" = 1000 errors,
an input length of 334 is required leading to a total overhead of

factor 63.

B. CONTROL OF M PUBLIC RESOLVERS

Under the assumption of an attacker who is able to utilize either
a remote code execution vulnerability in the software of a resolver
or a malicious service provider hosting a fraction of resolver, a rel-
ative amount of m entries, that is M entries in total, in the key
representation is known by the attacker. To analyze the effects of
such an attack on the security of Neuralyzer, two cases must be
distinguished (for the following we assume a maximum number of
resolvers used in the portrayal: each domain in the key portrayal is
organized by exactly 1 resolver):

In the best case (bc) scenario (from a user’s perspective) the num-
ber of different key bits affected by the attack is minimal. That is
for the portrayal C'rzn the number of rows I is minimal while the
number of columns /N is maximal. For a key length [and portrayal
size N the probability of being attacked in a best case distribution
of M controlled domains is as follows:

Pr(be) = <IMN> (16)

Opposed to the best case scenario the attacker has the maximum
possible knowledge about the encryption key in case the controlled
resolvers are distributed over a maximum number of rows I in the
portrayal. We simulated this attack for different fractions m of
controlled resolvers and varying key lengths I and portrayal sizes
N. Results show that even for small m the attacker can gather a
significant amount of information about the encryption key. For
m = 0.05 an attacker can control from 14% (at [= 128, N = 3)

