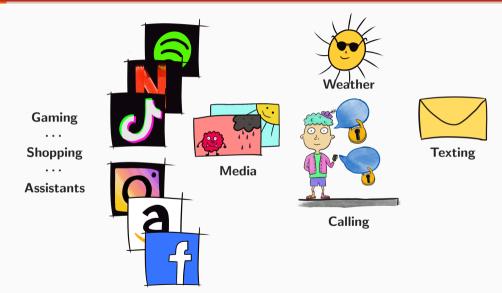
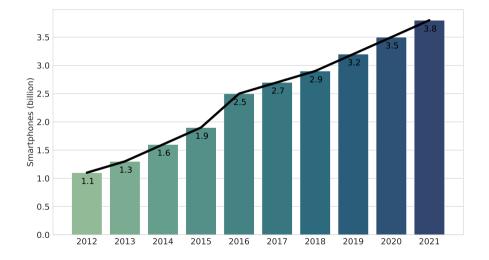


Advanced Network Security

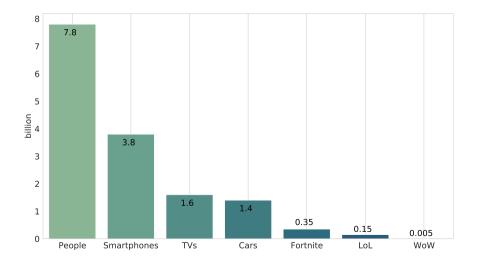

Lecture 2: Introduction to Mobile Networks

Harald Vranken, Katharina Kohls


September 15, 2022

Open University Nijmegen Radboud University Nijmegen

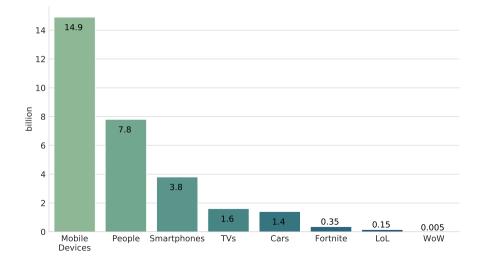
Ubiquity of Mobile Devices



How present are smartphones?

3

Let's put this into reference!



How many mobile devices do you have?

Let's get the real reference now!

7

Only casual?

- Critical infrastructures and emergency
 - Food and water
 - Public health
 - Transportation systems
 - Security services
- Industrial contexts
 - Sensors
 - Machines
 - Complex and automated systems

Summary

Mobile Devices

- ▶ There are tons of mobile devices
- ▶ Many of them use the cellular network
- ▶ Familiar for us: Casual use cases
- ▶ Not so familiar: Emerging use of mobile networks everywhere else

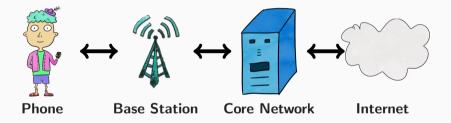
Our Focus

- ▶ We focus on the **security** of mobile networks
- ▶ Specific attacks and the required technical background

Look out for red slides! They provide a quick summary of a topic block and questions to test your knowledge.

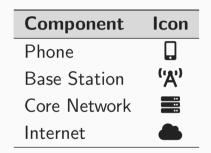
Detailed content overview:

2	Mobile Networks	Introduction to Mobile Networks	Sep 15
3	Attacks	Layer-2 Attacks and Requirements	Sep 22
4	ReVoLTE Attack	Decrypting Phone Calls	Sep 29
5	4G and 5G	Outlook on 5G	Oct 06
6	5G SUCI Catcher	Next-Gen Tracking	Oct 13
7	Presentations 1	Mobile Network Security	Oct 20


Mobile Network Basics

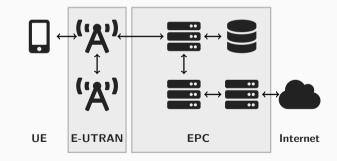
Mobile (Security) Evolution

Mobile Security Goals Repetitive? A bit. Mobile context? New!


Summary

Mobile Network Basics

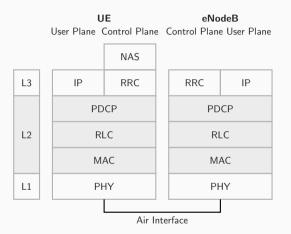



Generic Components

- ▶ **Phone**: Connects to the network
- Base Station: Provides the radio connection
- Core Network: Provides the main management
- ▶ Internet: Where you want to go

LTE Network

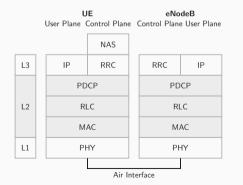
Component	LTE Acronym	LTE Component	lcon
Phone	UE	User Equipment	
Base Station	eNodeB	Evolved Node B	' A'
Core Network	EPC	Evolved Packet Core	••
Internet	IP Network	IP Network	


Focusing on the wireless connection:

- ▶ We focus on the air interface \square ↔ ('A')
- ▶ Another term for this is radio access network
- ▶ In LTE, the radio access network is called E-UTRAN

So far, we looked at some very basic components of a mobile network and how they are connected.

We now go into detail and take a look at the LTE protocol stack.


The next part is important 🖋

Get a better understanding: Compare this to the ISO/OSI or the TCP/IP stack

LTE Protocol Stack Layers

- ▶ User Plane: Your data, for example the website you request.
- **Control Plane**: *Network* data, what's needed to manage the connection.

- ► NAS: Non Access Stratum
- ▶ **RRC**: Radio Resource Control
- ► IP: Internet Protocol
- ▶ **PDCP**: Packet Data Convergence
- ▶ RLC: Radio Link Control
- ▶ MAC: Medium Access Control
- ▶ **PHY**: Physical Layer

Stack Layers Explained

- ▶ **NAS**: Connects the UE *inside* the E-UTRAN with MME *outside* the E-UTRAN. Authentication of UE, security control, paging.
- ▶ **RRC**: Manages the connection between the UE and the eNodeB. Connection establishment/release, radio bearer establishment, reconfiguration, ...
- ▶ **PDCP**: Transport of data with ciphering and integrity protection (RRC) and transport of IP packets (IP).
- RLC: Transport PDCP data in different modes (Acknowledged (AM), Unacknowledged (UM), Transparent (TM)).
- ► MAC: Logical channels for RLC for multiplexing into the physical transmission. Scheduling of within and between UEs.
- ▶ **PHY**: Transport data over the air interface.

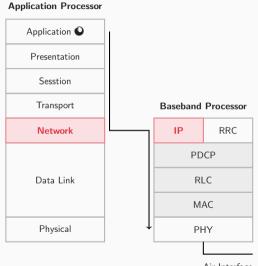
Application Processor

- ▶ The OS implements the network stack
- Standard Ethernet connection like WiFi

Baseband Processor

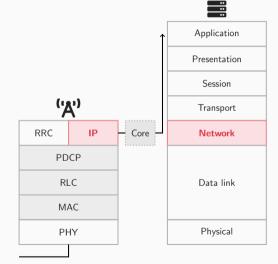
- ▶ The Baseband implements the modem
- Mobile data connection

Website request:

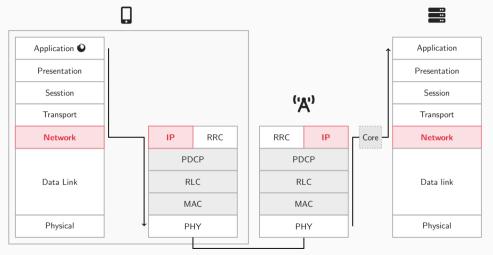

- Browser sends request
- ▶ Goes down the network stack
- Data link and physical layer are Ethernet-specific

Application O
Presentation
Sesstion
Transport
Network
Data Link
Physical

Application Processor


Baseband receives IP packet:

- Encapsulate in LTE-specific PDCP
- ► Hand down further
- ► Transmit via *air interface*


Website Request

- The eNodeB connects to the core network
- From there the requests reaches the internet
- The LTE stack represents the "Data link layer"

Air Interface

Combining Stacks $\Box \rightarrow `A' \rightarrow \blacksquare$

Air Interface

(1) Application Processor

- Browser prepares website request
- Go down the stack
- On the network layer, *Baseband* takes over

(2) Baseband Processor

- Receives the IP packet
- Encapsulates it in PDCP
- Hand down, send via air interface

(3) Base Station

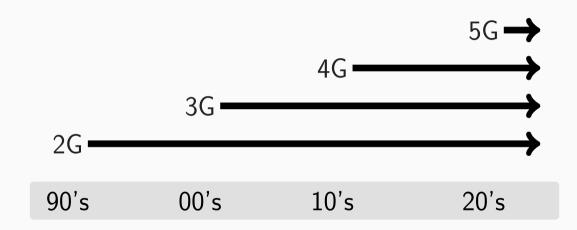
- Receive request
- Hand up the stack
- (4) Core Network
 - Process packets
 - Hand over to Internet
- (5) Internet stack takes over again
 - Go up the stack
 - Server receives request

Network Setup

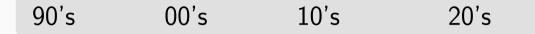
- $\blacktriangleright~$ A generic network consists of UE $\leftrightarrow~$ eNodeB $\leftrightarrow~$ EPC
- ▶ We focus on the air interface E-UTRAN
- ▶ LTE has its own mobile stack, comparable to the data link layer

Next Steps

- General security goals
- Security in mobile networks


Exam Preparation

- ▶ You get a cheat sheet with all acronyms.
- ▶ This only helps if you have an idea of what things do.
- ▶ If there are things you *do not* need for the exam, I'll mark them.

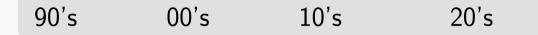

Example Questions (test your knowledge, no guarantees)

- What does the application processor do? What does the baseband processor do? What is the main difference between both?
- Sketch the communication between entities when you want to fetch a website with your phone and mobile data plan (ignore the stack for a moment).
- ▶ What is the air interface?
- ▶ Name all four layer-2 protocols of the LTE stack.

Mobile (Security) Evolution

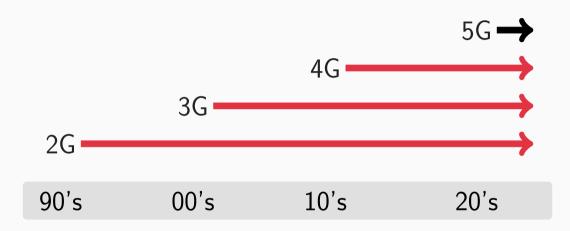

2G

▶ Weak crypto voice & data A5/1 GEA1


- ▶ Export ciphers GEA1 A5/2 40bit
- ▶ Missing network authentication
- ▶ Inter-core network builds upon trust (SS7)
- ► Vulnerabilities exists until 2G disappears

- Improved ciphers for voice and data
- ▶ Same GSM (SS7) inter-core network
- ▶ IMSI catchers and downgrade attacks
- ▶ Less research on 3G

Conclusion 3G is still vulnerable to certain attacks


4G

- ▶ New inter-core network (Diameter) but same attacks
- ▶ IMSI catchers and downgrade attacks
- ▶ Missing user plane integrity protection
- ▶ More sophisticated attacks & capabilities

Conclusion

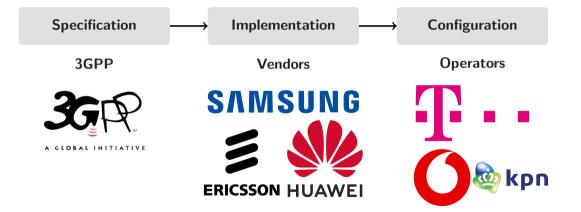
4G improved security but not perfect

Define things on paper

Transform it into code

Fine-tune the live network

Things are flawed by definition.


Update specification 🗐

All devices with this implementation are flawed.

Patch implementation 😂

Local network has a flawed configuration.

Patch configuration 😂

Security Evolution: Summary

2G, 3G, 4G, 5G

- Each mobile generation has their own flaws
- ▶ 4G is the current mobile generation
- ▶ Better than 3G, still not perfect
- ▶ 5G is pretty similar

Mobile Lifecycle

- ▶ Specification \rightarrow Implementation \rightarrow Configuration
- Flaws are inherited from one step to the next
- It's not always possible to patch a flaw
- 3GPP is responsible of the specification, vendors are responsible of implementations, operators are responsible of configurations.

- ▶ Explain why it is so difficult to remove flaws from the specification.
- ▶ What is the role of vendors? Where do we find their products?
- ▶ What is the current mobile generation?
- ▶ Who is responsible of the configuration of networks?
- Describe the most important difference between a specification flaw and an implementation flaw.

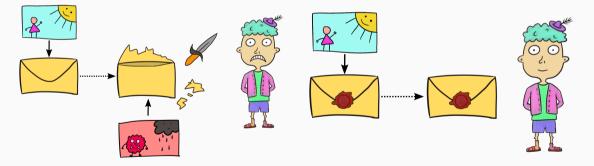
Mobile Security Goals

Repetitive? A bit. Mobile context? New!

Only authorized access allowed:

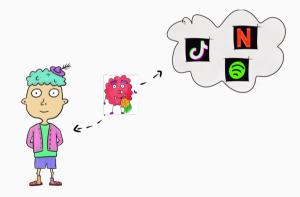
- Protect content from unwanted access
- ▶ Involve only intended communication partners

The provider knows this, but an attacker must not:


- ► Your geographical location
- ▶ Your temporary or even permanent identity

Data Integrity

Nobody fiddled with the data:


- ▶ Original message arrives at the recipient
- Not changed along the way

Availability

Being able to reach a service:

- Service is up and functioning
- ▶ You can reach it when needed

CIA + P

- ► Confidentiality, Integrity, Availability, Privacy
- ▶ These are *general* security goals
- ▶ We'll later see what this means in the context of LTE

Exam Examples

- \blacktriangleright Remember CIA + P and what this is about
- ▶ More important: Understand this in the context of LTE!

Security Category	Mobile Network Aims
	Confidentiality of User Data Traffic
Confidentiality	Confidentiality of Voice/Video Calls
	Confidentiality of text messages (SMS) $/$ RCS
Privacy	Location Privacy
	Identity Privacy
Integrity	Correct Charging Service
	Traffic Integrity
	Mutual Authentication
	Software and Hardware Integrity
Availability	Undistributed Service

Security Category	Mobile Network Aims	AttackAims
Confidentiality	Confidentiality of User Data Traffic	Interception of Internet traffic
	Confidentiality of Voice/Video Calls	Eavesdropping Phone Calls
	Confidentiality of text messages (SMS) $/$ RCS	Interception of text messages $/$ RCS
Privacy	Location Privacy	User tracking
	Identity Privacy	User identification
		User localization
Integrity	Correct Charging Service	Fraud attacks
	Traffic Integrity	Modification of traffic
	Mutual Authentication	Impersonation attack
	Software and Hardware Integrity	Malware and Hardware Trojan
Availability	Undistributed Service	Downgrade Attacks (stepping stone attack)
		DoS of target subscribers
		DoS of infrastructure (ransom)

Confidentiality: Only authorized access allowed

Security Category	Mobile Network Aims	AttackAims
	Confidentiality of User Data Traffic	Interception of Internet traffic
Confidentiality	Confidentiality of Voice/Video Calls	Eavesdropping Phone Calls
	Confidentiality of text messages (SMS) $/$ RCS	Interception of text messages / RCS

Privacy: Provider knows this, attacker must not.

Security Category	Mobile Network Aims	AttackAims
Privacy	Location Privacy Identity Privacy	User tracking
		User identification
		User localization

Integrity: Nobody fiddled with the data

Security Category	Mobile Network Aims	AttackAims
Integrity	Correct Charging Service	Fraud attacks
	Traffic Integrity	Modification of traffic
	Mutual Authentication	Impersonation attack
	Software and Hardware Integrity	Malware and Hardware Trojan

Availability: Being able to reach a service

Security Category	Mobile Network Aims	AttackAims
		Downgrade Attacks (stepping stone attack)
Availability	Undistributed Service	DoS of target subscribers
		DoS of infrastructure (ransom)

Summary

Basics and Security

- ▶ Radio Access Network: Basic features of mobile networks
- Mobile Evolution: Inherited problems
- ▶ CIA + P: General security features
- ▶ Discussion: How attack aims contradict security goals

Next Time

- ▶ Three attacks against LTE
- ► Website fingerprinting
- Identity mapping
- User data redirection
- ▶ ... and the required background

Acronyms	
AKA	Authentication and Key Agreement
C-RNTI	Cell Radio Network Temporary Identity
eNodeB	Evolved NodeB
EPC	Evolved Packet Core
E-UTRAN	Evolved Universal Terrestrial Radio Access
EPLMN	Equivalent PLMN
GUTI	Globally Unique Temporary Identifier
HPLMN	Home PLMN
HSS	Home Subscriber Service
IMSI	International Mobile Subscriber Identity
LTE	Long Term Evolution
MAC	Medium Access Control
MCC	Mobile Country Code
MME	Mobility Management Entity
MNC	Mobile Network Code
NAS	Non-Access Stratum
P-GW	PDN Gateway
PDCP	Packet Data Convergence Protocol
PDN	Packet Data Network
PHY	Physical Layer
PLMN	Public Land Mobile Network
RAP	Random Access Preamble
RA-RNTI	Random Access RNTI
RLC	Radio Link Control
RNTI	Radio Network Temporary Identity
RRC	Radio Resource Control
S-GW	Serving Gateway
S1AP	S1 Application Protocol
SCTP	Stream Control Transmission Protocol
VPLMN	Visiting PLMN
SDR	Software Defined Radio
TMSI	Temporary Mobile Subscriber Identity
UE	User Equipment