

Advanced Network Security

Lecture 5: Demystifying 5G

Harald Vranken, Katharina Kohls

October 6, 2022

Open University Nijmegen Radboud University Nijmegen

Recap

(1) ReVoLTE

- Exploiting keystream reuse in VoLTE calls
- Record target call
- Place subsequent call, recover keystream, decrypt
- (2) Required Background
 - ROHC and Codecs
 - VoLTE AKA and SRTP
 - IMS and data bearers
 - Keystream generation

4G versus 5G

- ▶ 4G is deployed and used by millions...
- ▶ 5G is in a transition state
- ▶ We can measure and test what happens in 4G...
- and for 5G it's sometimes not even specified.

This Lecture

Interactive Lecture!

- ▶ Introduction to 5G and some basics
- Selected topics
- Investigate blind spots

The 5G Wonderland

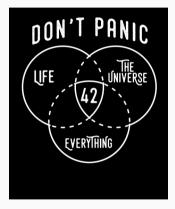
Technical Background

5G Improvements

The 5G Wonderland

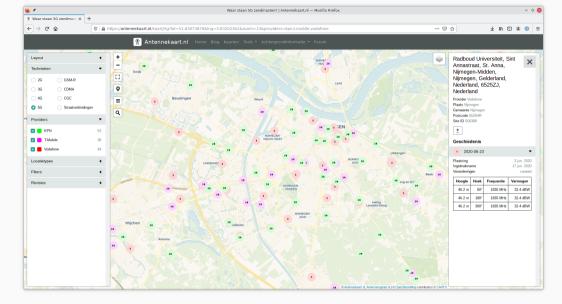
Fifth Mobile Generation

5G enables a new kind of network that is designed to connect virtually everyone and everything together including machines, objects, and devices.¹


¹https://www.qualcomm.com/5g/what-is-5g

5G is designed to deliver peak data rates up to 20 Gbps ... the Qualcomm[®] Snapdragon[™] X65 is designed to achieve up to 10 Gbps in downlink peak data rates.

But 5G is about more than just how fast it is. In addition to higher peak data rates, 5G is designed to provide much more network capacity by expanding into new spectrum, such as mmWave.


5G can also deliver much lower latency for a more immediate response and can provide an overall more uniform user experience so that the data rates stay consistently high—even when users are moving around.²

²https://www.qualcomm.com/5g/what-is-5g

What are possible use cases for 5G?

The answer to everything... where can I get it?

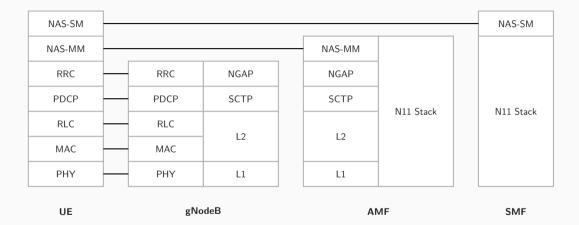
Technical Background

UE

gNodeB

•	
•	
•	
50	GC

Component	4G	5G	lcon
Phone	UE	UE	
Base Station	eNodeB	gNodeB	''A''
Core Network	EPC	5GC	**
Internet	IP Network	IP Network	


5G Non-Standalone (5G NSA)

- 5G Network supported by existing 4G RAN and EPC
- Dual Connectivity: UE simultaneously connected to LTE cell and 5G NR cell
- Best option for early deployment
- ▶ Quick creation of 5G coverage

5G Standalone (5G SA)

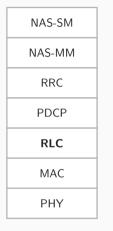
- 5G network without support from 4G RAN infrastructure
- ▶ 5G NR coverage
- Simplification and improved efficiency compared to NSA operation
- ► Final target architecture

Protocol Stack: Control Plane

https://www.metaswitch.com/knowledge-center/reference/what-is-the-5g-access-and-mobility-management-function-amf https://www.metaswitch.com/knowledge-center/reference/what-is-the-5g-session-management-function-smf

Protocol Stack: PHY, MAC

NAS-SM		
NAS-MM		
RRC		
PDCP		
RLC		
MAC		
РНҮ		

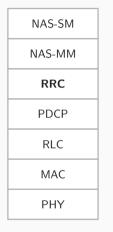

PHY, MAC

► Physical Layer (PHY)

- Receive and send signals
- Multiplexing

Medium Access Control (MAC)

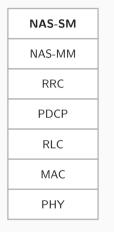
- Scheduling
- RNTI
- Error correction
- Retransmissions


Radio Link Control (RLC)

- Transfer upper layer data units in three different modes
 - $(1) \ {\sf Acknowledged} \ {\sf Mode}$
 - (2) Unacknowledged Mode
 - (3) Transparent Mode


Packet Data Convergence Protocol (PDCP)

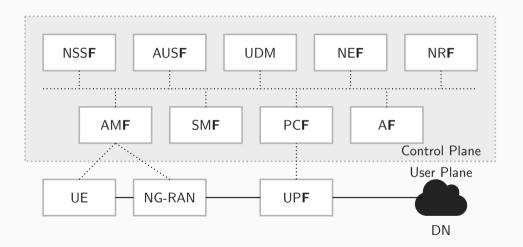
- Robust Header Compression (ROHC)
- Separation of user plane (IP) and control plane (RRC)
- ▶ Encryption of control and user plane
- ► Integrity protection of control plane


Radio Resource Control (RRC)

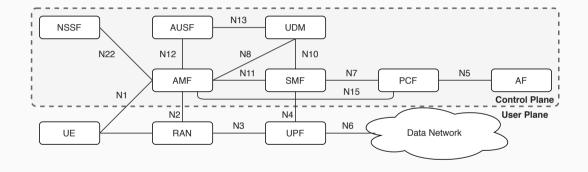
- ▶ Establish and release RRC connection
- Assign Radio Network Temporary Identity (RNTI)
- Establish data bearers
- ▶ Measurement configuration, reporting

NAS Mobility Management (NAS-MM)

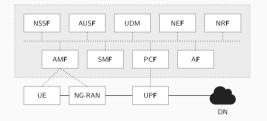
- Mobility management (paging)
- Identity management
- ► Authentication


NAS Session Management (NAS-SM)

- Establish and manage communication links
- ► Assign IP address
- ▶ Quality of Service


5G Improvements

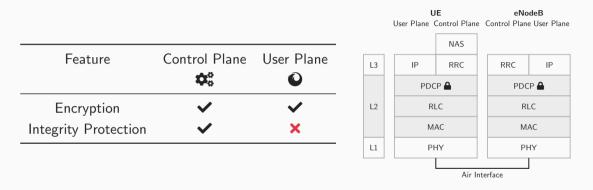
5G Improvements


Service-Based Architecture	Unified Access- agnostic Authentication	5GC-EPS Interworking Security	RAN Security DU-CU Split
User Plane	Primary	Visibility	Interconnection
Integrity Protection	Authentication	Configurability	Security SEPP
Enhanced	Increased	Secondary	Initial NAS
Subscriber Privacy	Home Control	Authencication	Message Protection

Reference Point Architecture

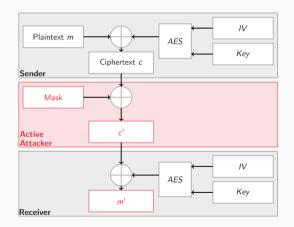
Service-Based Architecture

Service-Based Architecture


- ▶ REST/HTTPS-based interfaces
- Third party applications in the core network
- Cloud-based deployment
- ► New core network vendors

What are possible challenges of the service-based architecture?

- ► Correct implementation
- ▶ Trust between entities


5G Improvements

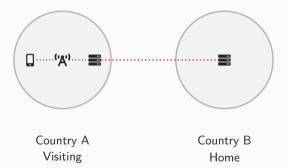
Service-Based Architecture	Unified Access- agnostic Authentication	5GC-EPS Interworking Security	RAN Security DU-CU Split
User Plane	Primary	Visibility	Interconnection
Integrity Protection	Authentication	Configurability	Security SEPP
Enhanced	Increased	Secondary	Initial NAS
Subscriber Privacy	Home Control	Authencication	Message Protection

There is no integrity protection for user plane traffic!

- ▶ PDCP encrypts IP packet
- ▶ Stream cipher: AES in counter mode
- ▶ XOR manipulation mask *m*
- ▶ Deterministic manipulation
- Manipulation remains undetected

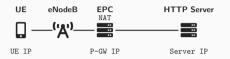
User Plane Integrity Protection

Mandatory Integrity Protection


- ▶ 4G: No integrity protection for user plane data
- ▶ User data redirection (L4), Full Impersonation (skipped)
- ▶ 5G: Mandatory to support
- Optional to use by operator

What are challenges of mandatory integrity protection?

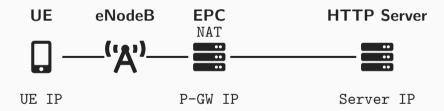
- Overhead
- Deployment


5G Improvements

Service-Based Architecture	Unified Access- agnostic Authentication	5GC-EPS Interworking Security	RAN Security DU-CU Split
User Plane	Primary	Visibility	Interconnection
Integrity Protection	Authentication	Configurability	Security SEPP
Enhanced	Increased	Secondary	Initial NAS
Subscriber Privacy	Home Control	Authencication	Message Protection

What does "Interconnection" mean?

- ▶ Roaming
- You connect to the local network
- Your credentials are in the home network
- ▶ Both networks must connect

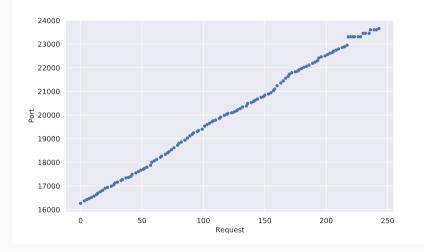


- ► HTTP Server: IP address of server
- P-GW: (External) IP address of the P-GW
- ▶ UE: (Internal) IP address of the UE

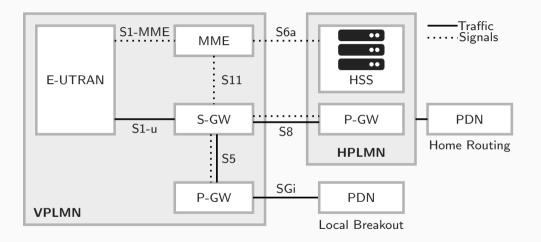
Internal vs. External

- The PDN Gateway (P-GW) is the gateway to the Internet.
- ► The P-GW is a NAT:
 - GW has its own IP address
 - \rightarrow Outside the LTE network
 - Users get individual internal IPs
 - \rightarrow Inside the LTE network

Demo: Looking at IP addresses, ports, gateways

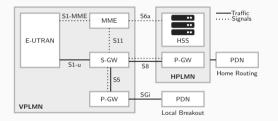


ір	port	time
80.187.122.135	16264	17:09:22
80.187.122.135	16367	17:09:28
80.187.122.135	16425	17:09:33
80.187.122.135	16469	17:09:41
80.187.122.135	16520	17:09:46
80.187.122.135	16572	17:09:51
80.187.122.135	16637	17:09:55
80.187.122.135	16694	17:09:58
80.187.122.135	16757	17:10:03
80.187.122.135	16817	17:10:08


Repeated server requests

- Phone sends HTTP GET request to server
- Server keeps track of requesting IP address
- ▶ Where does the request come from?
- ▶ P-GW connects to the server
- ► What else do you observe?
- ▶ The ports are incremented!

Port Increment



Roaming Architecture in 4G

Home versus visiting network

- ▶ The HPLMN is the home network.
 - This is where your SIM card is from.
 - Key components like the HSS are always at home.
- ► The VPLMN is the visiting network.
 - This is where you currently are.
 - In case you are in your SIM's home country, HPLMN = VPLMN

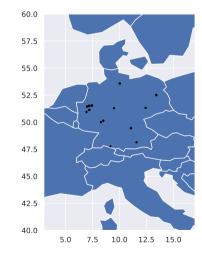
Local Breakout versus Home Routing

▶ There are two modes of operation

Local Breakout

- You use the infrastructure of the VPLMN
- The HPLMN is only involved in the AKA

Home Routing


- The S-GW routes your traffic to the home network.
- You use a P-GW in the HPLMN

80.187.121.17

ping traceroute GeoIP

What's going on in my phone?

Distribution of Gateways

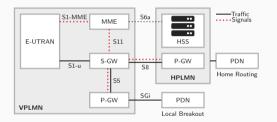
Interconnection Security SEPP

('A')

SEPP

PRINS

SEPP


''Å'

Before 5G

- ▶ SS7 network (70s) based on trust
- Many attacks on user tracking, eavesdropping

5G Standalone

- Security Edge Protection Proxy (SEPP)
- HTTPS and PRotocol for N32 INterconnect Security (PRINS)

Interconnection Security

- ▶ SS7, Diameter, SEPP, PRINS...
- Only for control traffic!
- Problem: SS7 remains as fallback!
- What happens to user plane roaming traffic?

Questions

- ▶ We know about the control plane, but what happens to user plane traffic?
- ▶ What transport protocols are used for the user plane traffic?

Hints

- Read the specification: EPS Roaming Guidelines Version 22.0 IR.88-v22.0_lecture.pdf
- ▶ Focus on LTE, that's OK for now
- ▶ If you find GTP you're on the right track!

What happens to user plane traffic?

- ▶ Local breakout (using the VPLMN's local gateway) or home routed
- Home routed traffic is sent over the N9 interface which uses the GPRS tunneling protocol (GTP). GTP uses UDP.
- ▶ Same as LTE and before, home routed traffic sent via SEPP

How does the SEPP stack differ from the SS7 stack?

- ► HTTP/2 and JSON, using TLS
- ▶ SS7 uses its own stack

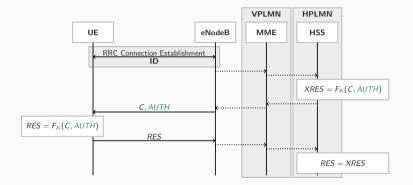
5G Improvements

Service-Based Architecture	Unified Access- agnostic Authentication	5GC-EPS Interworking Security	RAN Security DU-CU Split
User Plane	Primary	Visibility	Interconnection
Integrity Protection	Authentication	Configurability	Security SEPP
Enhanced	Increased	Secondary	Initial NAS
Subscriber Privacy	Home Control	Authencication	Message Protection

Authentication $\Box \leftrightarrow$ ('A')

- UE and eNodeB authenticate each other
- Can protect against Man-in-the-Middle, replay, spoofing attacks

Why are we looking at this? We need identifiers for mutual authentication!


Mutual Authentication in LTE:

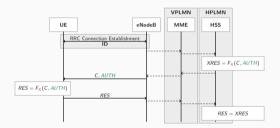
- LTE uses a challenge-response protocol to establish mutual authentication between the UE and the network
- ▶ The protocol uses symmetric key cryptography
- ▶ The UE has its secret K on the SIM card
- The operator stores their secrets K in the core network (HSS)

Authentication and Key Agreement AKA:

- ▶ Before the AKA, the RRC Connection Establishment takes place
- ▶ (Remember the Identity Mapping attack of last week, RNTIs, ...)
- \blacktriangleright In this process, the UE sends its ID towards the network
- ▶ The ID is used to check the correct individual information

Authentication and Key Agreement

Authentication and Key Agreement


- (1) After connection was established, network sends the challenge C and authentication token AUTH
- (2) Network generates individual XRES
- (3) UE uses secret K to generate RES
- (4) Send RES towards network, where it's compared to XRES

Important:

- ▶ The authentication token AUTH authenticates the network towards the UE
- ▶ RES = XRES authenticates the UE towards the network
- The eNodeB only does the communication. All important computations are done in the core network.

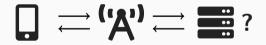
AKA Core Components

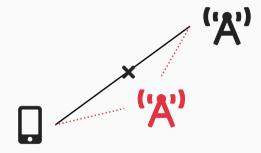
- ▶ Challenge C: Like a nonce
- Authentication Token AUTH: ID-specific
 - Sequence number, receives updates whenever used
 - In sync between HSS and UE
 - Authenticates network to UE
- Cryptographic function F: Generate tokens RES and XRES
- ► Secret K: Symmetric key

Enhanced Subscriber Privacy

Permanent and Temporary

- ▶ Unique identifier on the SIM card
- Because AKA uses a shared symmetric key, it can only happen after user identification
- Sending the IMSI/SUPI in plaintext means a user can be identified and tracked ^(C)
- To avoid this, temporary identifiers are used!

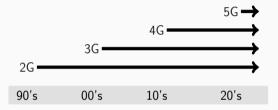

	4G	5G
Permanent	IMSI	SUPI
Temporary	TMSI	GUTI


It's not always possible to use the temporary identifiers.

When does a temporary identifier not work?

Contacting the Network

- Temporary identifiers need to be assigned
- ► When the user visits for the first time, there is no TMSI/GUTI for the user
- Special case: IMSI/SUPI cannot be derived from the TMSI/GUTI

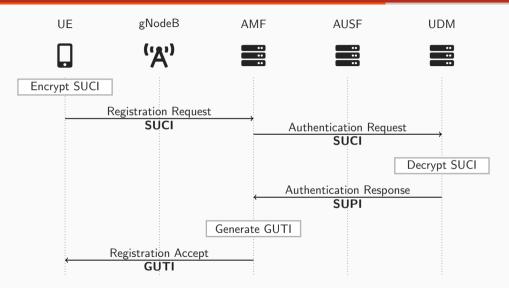

Man-in-the-Middle

- (1) UE connects to legitimate eNodeB "A"
- (2) Attacker places a fake base station '📯'
- (3) Stronger signal makes user connect to fake bts ('A')
- (4) Attacker can force the user to share permanent identifiers!

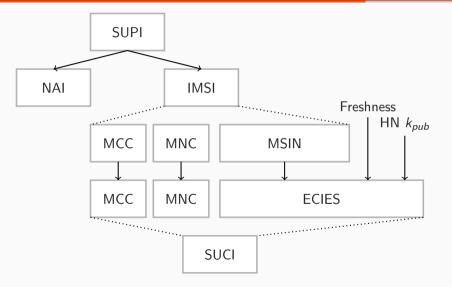
IMSI Catcher Protection in 5G

Backward Compatibility

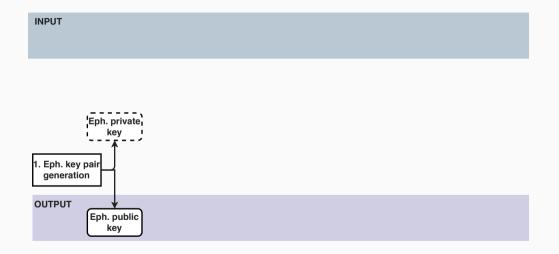
- 2G/3G/4G are vulnerable to IMSI catchers
- ▶ Main reason: Backward compatibility
- 5G solves the problem at the cost of backward compatibility

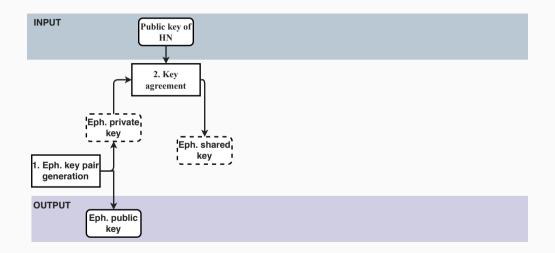

How do they do it?

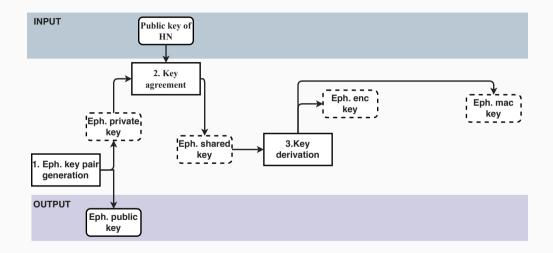
Subscription Concealed Identifier (SUCI)

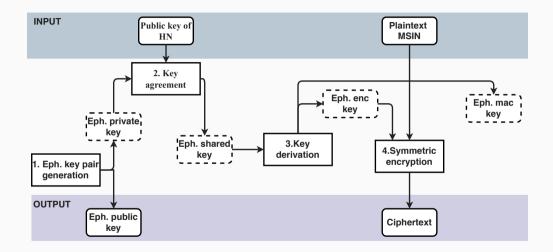

- ▶ Whenever the SUPI is needed, a concealed version is sent instead
- ▶ Elliptic Curve Integrated Encryption Scheme (ECIES) ³
- ▶ The SUCI is sent instead of the plaintext permanent SUPI

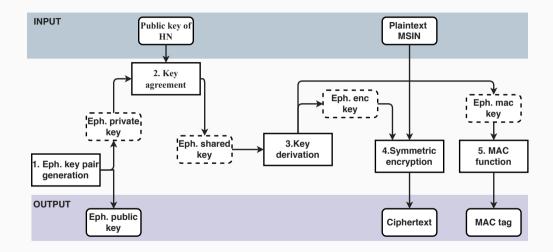
³ECIES combines a Key Encapsulation Mechanism with a Data Encapsulation Mechanism. It derives a bulk encryption key and MAC key from a common secret. It's a hybrid scheme that uses an asymmetric approach to send a symmetric key.

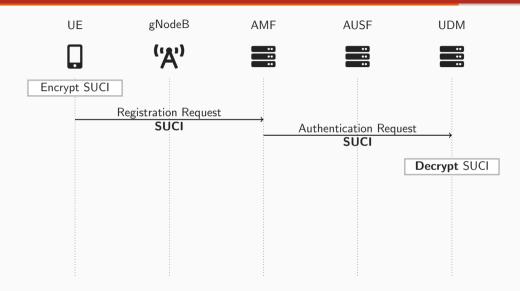

5G Identity Exchange

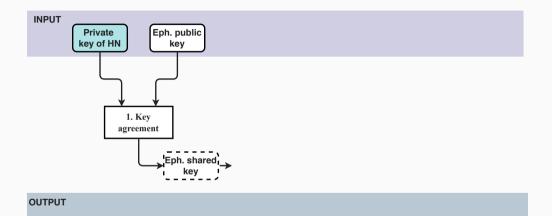


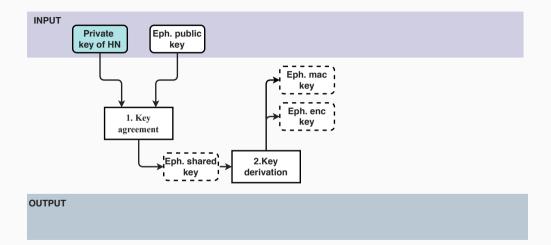

From SUPI to SUCI

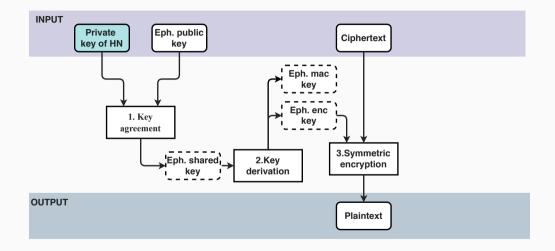


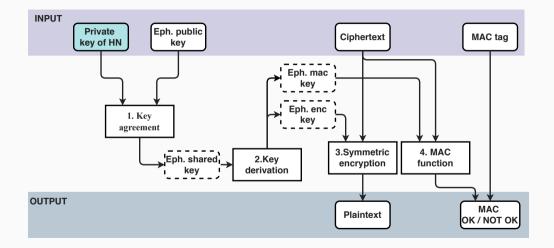

- ▶ The SUPI consists of
 - IMSI: Standard case we know from 4G; unique personal number
 - NAI: New 5G setting, personal address like user@homerealm.example.net
- ▶ IMSI has MCC and MNC as "preamble", example KPN Telecom B.V.:
 - MCC 204
 - MNC 69
- MSIN is a personal, permanent, unique number
- ▶ Needs protection, gets encrypted using a fresh input and a public key










5G Identity Exchange

Trace Analysis

registration_request_suci.pcapng


```
Packet 1

√ 5GS mobile identity

   -Lenath: 52
   -0... .... = Spare: 0
   -.000 .... = SUPI format: IMSI (0)
   -.... 0... = Spare: 0
   .... .001 = Type of identity: SUCI (1)
   - Mobile Country Code (MCC): France (208)
   - Mobile Network Code (MNC): Thales communications & Security (93)
   -Routing indicator: 0
   -\ldots 0001 = Protection scheme Id: ECIES scheme profile A (1)
    Home network public key identifier: 0
  Scheme output: 7b27b315a3423f7ca10fdb77028798f86b1f58fa876cc864514a8f882d33c40431a0371c...
       ECC ephemeral public key: 7b27b315a3423f7ca10fdb77028798f86b1f58fa876cc864514a8f882d33c404
       Ciphertext: 31a0371c
     MAC tag: 0x7bdd02efd7162ba2
```

```
Packet 2

√-5GS mobile identity

   -Length: 52
  -0... .... = Spare: 0
   -.000 .... = SUPI format: IMSI (0)
   -.... 0... = Spare: 0
   -\ldots .001 = Type of identity: SUCI (1)
   - Mobile Country Code (MCC): France (208)
   — Mobile Network Code (MNC): Thales communications & Security (93)
   -Routing indicator: 0
   — .... 0001 = Protection scheme Id: ECIES scheme profile A (1)
    Home network public key identifier: 0
  Scheme output: b34b34516dafed6973956d4cdd548d1e5d568bba76f29a9a0c17e62c283492392f1fd3e7...
       ECC ephemeral public key: b34b34516dafed6973956d4cdd548d1e5d568bba76f29a9a0c17e62c28349239
      -Ciphertext: 2f1fd3e7
     MAC tag: 0xe158a42f076118da
```

What we will do:

- Install the CryptoMobile lib
- ▶ Prepare the keys
- ▶ Load the SUCIs from the PCAPs
- ► Recover the IMSIs

Example (Linux Machine)

git clone https://github.com/Plsec/CryptoMobile.git
cd CryptoMobile
python setup.py install

```
from CryptoMobile.EC import *
from CryptoMobile.ECIES import *
import binascii
# Setting up home network UDM environment
ec = X25519 (binascii.unhexlify (
  'c53c22208b61860b06c62e5406a7b330c2b577aa5558981510d128247d38bd1d'))
hn_privkev = ec.get_privkev()
hn_pubkey = ec.get_pubkey()
binascii.hexlify(hn_pubkey)
b'5a8d38864820197c3394b92613b20b91633cbd897119273bf8e4a6f4eec0a650'
hn = ECIES_HN(hn_privkev, profile='A')
```

Demo: CryptoMobile

```
# Decrypting incoming SUCI A from PCAP
ue_pubkey = binascii.unhexlify(
    '7b27b315a3423f7ca10fdb77028798f86b1f58fa876cc864514a8f882d33c404')
ue_ciphertext = binascii.unhexlify('31a0371c')
ue_mac = binascii.unhexlify('7bdd02efd7162ba2')
hn_msin = hn.unprotect(ue_pubkey, ue_ciphertext, ue_mac)
binascii.hexlify(hn_msin)
```

> b'00000100' # IMSI is 2089300000100 MCC and MNC in cleartext PCAP

```
# Decrypting incoming SUCI B from PCAP
```

ue_pubkey = binascii.unhexlify(

'b34b34516dafed6973956d4cdd548d1e5d568bba76f29a9a0c17e62c28349239')
ue_ciphertext = binascii.unhexlify('2f1fd3e7')
ue_mac = binascii.unhexlify('e158a42f076118da')
75

Summary

Introduction to 5G

- ▶ The 5G wonderland
 - 20Gbps, ultra low latency
 - New use cases, new network concepts
- Improvements
 - Service-based architecture
 - User plane integrity protection
 - Interconnection security
 - Enhanced subscriber privacy
- ▶ Digging through the specification
- Decrypting SUCIs

Acronyms

cronyms	
5G NR	5G New Radio
5G NSA	5G Non-Standalone
5G SA	5G Standalone
5GC	5G Core
AF	Application Function
AMF	Access and Mobility Management Function
ΑΚΑ	Authentication and Key Agreement
AUSF	Authentication Server Function
eNodeB	Evolved NodeB
ECIES	Elliptic Curve Integrated Encryption Scheme
EEA	EPS Encryption Algorithm
EPC	Evolved Packet Core
E-UTRAN	Evolved Universal Terrestrial Radio Access
gNodeB	gNodeB
GUTI	Global Unique Temporary Identifier
HPLMN	Home PI MN
HSS	Home Subscriber Service
IMS	IP Multimedia Subsystem
IMSI	International Mobile Subscriber Identity
MAC	Medium Access Control
MCC	Mobile Country Code
MME	Mobility Management Entity
MNC	Mobile Network Code
MSIN	Mobile Station Identification Number
NAI	Network Access Identifier
	Non-Access Stratum
NAS-MM	NAS Mobility Management
NAS-SM	NAS Session Management
NEF	Network Exposure Function
NGAP	NG Application Protocol
NRF	Network Respository Function
NSSF	Network Slice Selection Function
P-GW	PDN Gateway
PCF	Policy Control Function
PCRF	Policy and Charging Rules Function
PDCP	Packet Data Convergence Protocol
PDN	Packet Data Network
PHY	Physical Layer
PRINS	PRotocol for N32 INterconnect Security
	Radio Access Network
RA-RNTI	Random Access RNTI
RLC	Radio Link Control
RNTI	Radio Network Temporary Identity
ROHC	Robust Header Compression
RRC	Radio Resource Control
RTP	Real-Time Transport Protocol
SCTP	Stream Control Transmission Protocol
SMF	Session Management Function
S-GW	Serving Gateway
SEPP	Security Edge Protection Proxy
SIP	Session Initiation Protocol
SMF	Session Management Function
SRTP	Secure Real-Time Transport Protocol
SUCI	Subscription Concealed Identifier
SUPI	Subscription Permanent Identifier
SS7	Signalling System 7
TMSI	Temporary Mobile Subscriber Identity
UE	User Equipment
UDM	Unified Data Management
UPF	User Plane Function
VPLMN	Visiting PLMN